Acomodación de la convergencia entre África y la Península Ibérica, Golfo de Cádiz y Mar de Alborán, a partir del análisis de terremotos

J.T. Vázquez (*) y R. Vegas (**)

(*) Departamento de Geología, Facultad de Ciencias del Mar, Universidad de Cádiz, Campus Río San Pedro, 11510-Puerto Real. juan.vazquez@uca.es
(**) Departamento de Geodinámica, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 - Madrid.

ABSTRACT

The accommodation of the Africa-Eurasia convergence in the southern margin of the Iberian Peninsula can be described by the analysis of earthquakes distribution and magnitude. This analysis allows the differentiation of two segments in the plate boundary. In the Gulf of Cádiz, deep and high magnitude seismic events are localised under some submarine highs (Josephine, Gorringe, Sao Vicente and Guadalquivir) suggesting the existence of underthrusting zones connected by transfer transverse zones. The shallow and diffuse seismicity of this oceanic area would correspond to distributed deformation taken by shallow faults and related to the underthrusting of the Eurasian lithosphere. In contrast, the accommodation of the convergence in the Alboran Sea is assumed in a zone of limited subduction, the West Alboran Subduction Zone, which is defined by the occurrence of intermediate earthquakes. In this zone, the Iberian lithosphere plunges under the weak Alboran platelet. The shallow, weak and diffuse seismicity corresponds indeed to distributed deformation. The main shocks of this segment are concentrated at depth in the contact between the strong African lithosphere and the Alboran platelet.

Key words: seismicity, convergence, African-Eurasian plate boundary, southern Iberia

Geogaceta, 27 (1999), 171-174
ISSN: 0213683X

Introducción

La deformación, y la actividad sísmica asociada, del borde meridional de la Península Ibérica y parte septentrional de África, tienen su origen en la convergencia que se produce entre las placas de África y Eurasia a lo largo de su límite común, límite que se extiende desde la falla transformante del Mar Muerto hasta la Dorsal Mediterránea. El movimiento relativo entre ambas placas se puede explicar como una rotación anticipatoria de África con respecto a Eurasia, alrededor de un polo euleriano situado en las proximidades de las islas Canarias (Lat. 28,2°N - Long. 21,1°W, según Bufton et al., 1988) o del archipiélago de Cabo Verde (Lat. 21,4°N - Long. 20,5°W, según Argus et al., 1989). La posición geográfica de este polo de rotación condiciona la dirección y la magnitud del vector deslizamiento o desplazamiento (slip vector) que describe el movimiento relativo entre estas dos grandes placas y, por tanto, discrimina entre los diferentes tipos de límites - divergente, convergente o transformante - a lo largo de la frontera de placas. El segmento de este límite de placas comprendido en la región del Golfo de Cádiz y el Mar de Alborán (sur de la Península Ibérica), corresponde a una zona de convergencia con una dirección 140° a 130° y una tasa de 2 a 4 mm/a (DeMets et al., 1990; Westaway, 1990). En este contexto al oeste del Banco de Gorringe la convergencia es sutilizada por movimiento transcurrente en la falla de Gloria.

Por otra parte, la región extendida entre los Bancos de Gorringe y el área de Túnez se caracteriza por una sismicidad difusa donde el límite de placas no se puede definir como una estructura singular. Este carácter difuso ha sido atribuido por Vegas (1991) a zonas de deformación distribuida en donde la convergencia entre dos placas se resuelve mediante rotaciones de bloques alrededor de ejes verticales, estos bloques tendrán sucesivamente menor tamaño, desde litosféricos, y por tanto verdaderas subplacas o microplacas, hasta bloques que sólo afectarían a la corteza superior.

El objetivo de esta nota es contribuir a la definición del límite de placas mediante el análisis de la distribución espacial de los terremotos. Se ha utilizado la base de datos del Instituto Geográfico Nacional para la zona considerada, en especial la sismicidad ocurrida entre los años 1990 y 1996 (Fig. 1). Se han aplicado diversas técnicas geométricas sencillas tales como representaciones de los terremotos en diagramas tridimensionales, según secciones de diferente dirección o según intervalos de diferente profundidad, así como mapas de isovalores tanto de la profundidad como de la magnitud, con el objeto de controlar la variación en la profundidad de las fuentes sismogénicas así como los segmentos con mayor energía sísmica potencial. En este sentido, se deben aislaren los máximos de deformación, o de liberación de energía sísmica, producidos en niveles superficiales como consecuencia de las rotaciones de bloques dentro de una zona de deformación distribuida. Por otra parte, es necesario tener en cuenta que en la región confluyen distintos dominios tectónicos litosféricos, caracterizados por variación de los niveles estructurales y por tanto de los niveles sismogénicos.

Interpretación y discusión

La sismicidad en el área se caracteriza por la presencia de un gran número de eventos de baja a moderada magnitud (<5 mb), y profundidad superficial (<20 km), si bien es llamativa la existencia de un grupo de terremotos intermedios, entre 40
y 120 km, y profundos a más de 600 km de profundidad. Los terremotos de profundidad intermedia se distribuyen fundamentalmente en dos franjas, una primera de dirección meridiana, ligeramente arqueada, y situada bajo la cuenca del mar de Alborán, aproximadamente según el meridiano 4°30'W (Morales et al. 1997; Buforn et al. 1997), y la segunda, menos localizada, extendida a lo largo del margen continental septentrional del Golfo de Cádiz y que termina en el área de los bancos de Gorringle (Fig. 1). La existencia de estos terremotos intermedios y profundos ha permitido el estudio de la estructura del manto, estableciéndose la presencia bajo el área del mar de Alborán de una zona de manto anómalo de baja velocidad (Seber et al., 1996), y a mayor profundidad una zona de manto anormalmente frío (Blanco y Spackman, 1993) probablemente correspondiente a una antigua lámina de subducción.

Las zonas con mayor densidad sísmica corresponden a Adra y Alhucemas, si bien es reseñable la gran actividad sísmica que presenta todo el área de la cordillera Bética en general, así como la presencia de varios máximos relativos de sismicidad en el área del Golfo de Cádiz (Fig. 1). El análisis del mapa de magnitudes presenta unas zonas bien definidas de mayor magnitud en el área oceánica del Golfo de Cádiz, en el centro del Rif y en la margen argelina (Fig. 2). Esto indica por una parte un mayor espesor de la esquizosfera y, probablemente, una proximidad a un borde de placas, aunque este borde no se corresponda con la concentración de la sismicidad en superficie (comparar Figs. 1 y 2). El primer aspecto indica la existencia en el Golfo de Cádiz de dos litosferas oceánicas antiguas y resistentes con parte del manto litosférico formando parte de la esquizosfera, mientras que en el norte de África se debe inferir una proximidad al límite de placas, que correspondería al contacto de la litosfera continental africana con corteza gruesa estructurada en el Precámbrico y correspondiente a una esquizosfera potente.

Respecto a la concentración de sismos de mayor magnitud, en el área del Golfo de Cádiz el límite de placas debe corresponder a zonas donde se concentra la acumulación de esfuerzos contractivos (infracabalayamientos), con expresión en superficie en forma de relieves positivos. Estas zonas convergentes están conectadas por estructuras transversales que mantienen los esfuerzos compresivos mediante estructuras de transferencia con movimiento transcurrente. Así mismo, en el área norteafricana el límite de placas debe corresponder en profundidad al infracabalayamiento de la litosfera africana bajo la débil subplaca de Alborán.

Por su parte, la distribución de hipocentros (Figs. 1 y 3) también define dos zonas distintas respecto a la acomodación de la convergencia y según los

Figura 1. Localización de los terremotos considerados en este estudio, clasificados según tres rangos de profundidad.

Figure 1. Seismicity map of the area. Earthquakes are classified by depth.

Figura 2. Mapa de isóvalores de la magnitud de los terremotos para el área considerada.

Figure 2. Isomagnitudes map.
Figura 3. Secciones esquemáticas de la sismicidad. Corte 1: realizado según el paralelo 36°N y Corte 2 realizado según una dirección N135°E a través del arco formado por los terremotos de profundidad intermedia.

Figure 3. Schematic sections of seismicity. Corte 1, section along the 36°N parallel and Corte 2 drown across the arc of intermediate earthquakes, N135°E directed.

vectores de desplazamiento y deslizamiento. Así, en el Golfo de Cádiz, la convergencia es amortizada en profundidad mediante los infracabalamentos de la litosfera ibérica respecto a la litosfera africana y mediante las zonas de transferencia que relacionan contínuo el mantelm. En niveles superficiales esta convergencia se absorbe en numerosas fallas y, por tanto, en una sismicidad mucho más difusa. El sentido del transporte tectónico no está bien definido en este sector, así que los niveles inferiores se observan cabalgamien
tos tanto hacia el norte como hacia el sur, si bien parecen predominar los primeros, quizás como respuesta al mayor espesor y resistencia de la litosfera africana (de edad jurásica) frente a la litosfera ibérica (de edad cretácea), si bien este mismo factor indicaría una mayor flotabilidad de la litosfera ibérica y, por tanto, una mayor tendencia al hundimiento de la litosfera africana en profundidad.

La otra zona corresponde a la región del Mar de Alborán donde la convergencia produce la subducción hacia el este sureste de parte de la litosfera continental ibérica bajo el arco frontal de la subplaca de Alborán; la lámina de subducción tendría un alcance muy limitado, pues los terremotos no superan los 150 km de profundidad (fig. 3). Esta subducción, definida recientemente como una subducción continental activa (Morales et al., 1999), acomodada en profundidad la convergencia África-Península Ibérica mediante la superposición de la subplaca de Alborán, empujada, de alguna manera, por África. En superficie el acortamiento se resuelve mediante la deformación distribuida de la subplaca de Alborán y, por tanto, es asumido en la importante sismicidad difusa superficial.

Consideraciones finales

La existencia de un gran número de eventos para la zona considerada junto con sus características de baja o moderada magnitud, reafirma la presencia en la zona de una zona de deformación distribuida donde la convergencia entre África y Eurasia se resuelve mediante el movi
dimiento de numerosos bloques en la cortez, especialmente en los niveles de la cortez superior de las áreas continente
tes.

Dos hechos importantes se infieren, además, de este estudio de los terremo
tos. Por una parte las dos zonas bien delimitadas que absorben la convergencia lenta entre África y Eurasia de manera completamente diferente a mayor profun
dad (manto litosférico y cortez inferior): infracabalamientos en el área del Golfo de Cádiz (correspondientes a los bancos de Josephine, Gorrinre, pro
longación de San Vicente en la Llanura de la Herradura y banco del Guadalqui
ti, fig. 4) y subducción vertical en el Arco del Mar de Alborán occidental, acompañada de sismicidad concentrada en el contraste litosférico que existe ent
tre África y la subplaca de Alborán.

Esta forma de acomodación de la convergencia condiciona el origen de los movimientos más fuertes y el riesgo sísmico concomitante. Por otra parte es preciso recordar que este dispositivo de placas actual sucede en el tiempo a la subducción miocena de dirección NE-SW que dio lugar a los apilamientos de
cortezas en las Béticas y el Rif-Tell, en la lámina correspondiente a esta antigua subducción tendrían su origen, en la actualidad, la sismicidad profunda existente bajo las Cordilleras Béticas (fig. 4).

Referencias

Morales, J., Serrano, I., Jabaloy, A., Ga