Propagación de la onda de marea en el Estuario del Río Tinto (Huelva, España)

Tidal wave propagation into the Tinto River Estuary (Huelva, Spain)

J.A. Morales, y J. Borrego

Departamento de Geología. Universidad de Huelva. Campus Universitario de La Rabia. 21819 Palos de la Frontera. Huelva.

ABSTRACT,

The Tinto River Estuary, located at the central sector of the Huelva Coast is a mesotidal estuary, where the mean tidal range is two meters. Tinto river has small mean discharges (100.48 Hm³) but it is strongly seasonal. Tidal wave propagates into the estuary according a hyposynchronous model, that increases during neap tides. The study of the tidal behavior at 6 stations along the estuary, allows the construction of curves of the instantaneous water position. These curves show different hydraulic gradients interpretable as sense of tidal currents. Points without hydraulic gradient mean slacks with nule velocity of currents. These slacks can be convergent or divergent. Both types experiment a displacement to the inner part of the estuary, the former during the flood, the second during the ebb. The convergent slack remain in the tidal limit until the arrival of the divergent slack. Then both become link and dissappear generating a general ebb situation. Southwest winds can accelerate this process.

Key words: estuary, mesotidal, tide propagation, model.

Geogaceta, 27 (1999), 115-118
ISSN: 0213683X

Introducción

El estuario mesomarreal del Río Tinto se sitúa en el sector central de la Costa de Huelva en el Sur Oeste de España y Junto con el estuario del Río Odiel conforma el sistema estuarino conocido como Ría de Huelva (Fig. 1). Ambos estuarios comparten el mismo sistema de barreras arenosas que cierran su entrada y pueden clasificarse como «Estuarios-barrera» (Fairbridge, 1980).

Los estuarios de la Costa de Huelva se formaron con el inicio de la Transgresión Flandriense (Holoceno), que significó la inundación marina de los principales valles fluviales excavados por los ríos durante el Pleistoceno. El sistema estuarino del Río Tinto se encuentra en un avanzado estado de colmatación como causa de la estabilización del nivel del mar hace aproximadamente unos 6500 años (Zazo et al., 1994; Rodríguez-Ramírez, 1996) y una elevada tasa de acumulación de 3 mm/año en la zona submareal y 6 mm/año en la zona intermareal (Davis et al., 1999).

El régimen de mareas es uno de los factores principales en la evolución de los estuarios, ya que el número de horas de exposición y sumersión controla directamente la zonación biosedimentaria existente.
tente en la franja intermareal (Swink-banks y Murray, 1981). De igual modo, la propagación de la onda de marea en el interior de los estuarios condiciona, junto con los aportes fluviales: (1) las condiciones de mezcla de aguas existentes en el estuario, (2) la circulación interna de las masas de agua y (3) el intercambio con la zona costera adyacente. El objetivo de este trabajo es la propuesta de un modelo de circulación a partir de los datos de la propagación de la onda de marea en el interior del estuario.

La desembocadura del Río Tinto está sometida a un clima templado cálido de veranos calurosos y secos, e inviernos suaves y húmedos; el régimen de vientos dominantes procede del Norte y Sur Oeste, siendo frecuentes los temporales del Atlántico y los temporales procedentes del Estrecho de Gibrallar. Esta circulación eólica genera un sistema de oleaje en la zona costera abierta donde dominan las olas procedentes del S.O., lo que da lugar a una deriva litoral que transporta sedimento de Este a Oeste, y que es responsable de la construcción de las principales macroformas arenosas en la desembocadura de la Ría de Huelva.

La descarga fluvial del Río Tinto es, al igual que el clima, marcadamente estacional y con una gran irregularidad interanual. El aporte medio anual es de 100.48 Hm³ (serie 1966/67-1981/82), aunque este valor es muy poco significativo y, si bien en las avenidas más importantes puede sobrepasar los 200 Hm³, es frecuente que la aportación de un solo mes de un año lluvioso supere a la total anual de un año seco. Este comportamiento es muy similar al estudiado en el río Odiel (Borrego, 1992) y, en efecto, hay un paralelismo entre las series de datos de aportes de ambos ríos; siendo los caudales del Río Tinto menores en un 76.6 %.

Este sistema estuarino es afectado por un régimen mesomareal semidiurno, con un rango medio en su sector central de 2.69 metros, donde se producen ciclos bisemanuales de mareas vivas y muertas y ciclos semestrales de equinocio y solsticio. Durante las mareas vivas llega a alcanzarse un rango medio de 3.06 metros, mientras que en las mareas muertas la media es de sólo 1.70 m.

Metodología

Las alturas de marea durante tres ciclos de marea completos, correspondientes con los rangos teóricos de Marea Muerta Media (30-9-94), Marea Media (5-10-95) y Marea Viva Media (25-10-95) se midieron simultáneamente en 5 estaciones a lo largo del

Figura 2.- Curvas de tiempo-altura de las tres mareas estudiadas en las diferentes estaciones.

Figure 2.- High-time curves for the three studied tides at the different stations.
Las tres últimas estaciones están muy próximas por su localización en la zona fluvial del estuario, en la que los cambios en el desplazamiento de la onda son, a priori, más rápidos. En cada estación se midió la altura topográfica con un altímetro calibrado en el muelle de Vigía, lugar de localización del maresografía del Puerto de Huelva. Durante todas las medidas de alturas mareales el caudal fluvial fue medio para minimizar así el efecto de las corrientes fluviales.

Resultados e interpretación

De la representación gráfica de los resultados numéricos obtenidos en forma de curvas de tiempo-altura (Fig. 2), resulta que la onda de marea se desplaza más rápido hacia el interior del estuario durante las mareas vivas, reduciendo hasta en 30 minutos la duración de su desplazamiento hasta la zona más interna del estuario. El tramo primero, que se sitúa entre las estaciones 1 y 2 es el que presenta mayores velocidades de desplazamiento de la onda, lo que se debe a la existencia de un único canal y a la amplitud y profundidad del mismo; a partir de la estación 2 la onda mareal pierde velocidad, debido a la brusca disminución de la profundidad del canal y a la presencia de varios canales mareales. Cuanto más nos situamos hacia la cabecera del estuario más lenta se desplaza la onda de marea, porque aumenta la fricción con el fondo. Este fenómeno explica también que en estos sectores la onda de marea se desplace más lentamente en los sectores estuariños internos durante las mareas vivas, al contrario de la tendencia general del estuario.

En cuanto a la amplitud de la onda de marea, se observa que entre las estaciones 1 y 2 existe un ligero aumento de rango, que se confiere al estuario bajo un cierto carácter hípersincrónico. Esta hipersincronía es más acusada durante las mareas vivas, en las que el efecto de convergencia domina sobre la fricción con el fondo, porque la existencia de balsas de yeso sobre antiguas áreas de marisma inhibe su inundación mareal. Este es el efecto contrario al observado por Borrego (1992) en el estuario del Río Odie, donde sí se incrementa el efecto de fricción cuando se inundaba la marisma alta. A partir de la estación 2 domina la fricción con el fondo sobre la convergencia, esto se debe a que la pérdida de profundidad de los canales tiene lugar de modo más rápido que su pérdida de anchura y además, al incremento del número de canales de distribución mareal.

La onda de marea sufre una deformación progresiva conforme se desplaza hacia el interior del estuario, de tal manera que se incrementa la duración de los semicírculos de refluo mientras que la duración del flujo mareal disminuye. Esta deformación se acentúa en las situaciones y lugares donde la fricción con el fondo es más acusada, es decir, en las mareas vivas y a partir de la estación 2, haciéndose máxima en el estuario fluvial, donde el flujo dura sólo 2'15 horas frente a las 9'45 horas de duración del refluo.

Mediante el análisis de curvas de alturas instantáneas horarias (Fig. 3) en las tres mareas medidas, pueden inducirse sendos esquemas dinámicos de circulación. En los tres esquemas dinámicos coinciden, a grandes rasgos, el modelo de propagación de la onda; aunque se aprecian diferencias en cuanto a la duración temporal del desplazamiento de los repuntes mareales. Con lo cual se propone un único modelo para los tres estados de mareas que es el descrito a continuación (Fig. 4).

Aunque en realidad, el modelo es cíclico y repetitivo, podemos comenzarlo en el momento en que termina el semicírculo de llenado en la entrada al estuario; en este momento el repunte de pleamar (divergencia de corrientes mareales) comienza a entrar en el sistema, de forma que su desplazamiento hacia la zona interna hace decrecer la velocidad de las corrientes de flujo que aún prevalecen en estos sectores. De esta forma la corriente fluvial gana importancia relativa, haciendo que la zona de confrontación de ambas corrientes (repunte de bajamar), que se

Figura 3.- Curvas instantáneas horarias de las tres mareas estudiadas.

Figure 3.- Instantaneous curves of the three studied tides.
Figura 4.- Modelo de circulación marea propuesto.

Figure 4.- Suggested tidal circulation model.

sitúa durante el flujo por encima de la estación 5, se desplace hacia las estaciones 3 o 4 según la magnitud de la marea. Así, ambas inflexiones de la superficie del agua tienden a encontrarse completando el semicírculo de llenado en la zona interna alrededor de una hora y media después del momento de pleamar en el marea-foo del Puerto de Huelva.

A partir de este momento comienza el funcionamiento del reflujo marea de forma uniforme en todo el estuario, situación que se mantiene durante algo más de 4 horas, hasta que la próxima bajamar alcance la boca del estuario y comience un nuevo ciclo. En contra de lo que cabría pensar, la duración de esta situación es mayor cuanto menor es el rango marea, llegando a ser de 5 horas en el caso de la Marea Muerta Media.

Algo más de 6 horas después del comienzo del ciclo (7 horas para una M.M.M.), en la zona más baja del estuario comienza a subir el nivel del agua, generando un nuevo repunte convergente, que migra rápidamente hacia el interior del estuario. Dicho repunte marea, sin embargo, se ve retardado a llegar a las estaciones 2, precisamente en ese lugar se produce un rápido decrécimiento de la profundidad y un aumento en el número de canales, lo que incrementa bruscamente la fricción con el fondo y con ello decrece la velocidad de desplazamiento. El repunte convergente, que tarda sólo 15 minutos en recorrer los casi 6 Km. entre el punto 0 y la estación 2, tarda más de 2 horas en recorrer los 20 Km. que separan la estación 2 del límite marea.

El desplazamiento del repunte convergente (bajamar) es mucho más lento que el desplazamiento del repunte divergente (pleamar), por causa de la pendiente del fondo y el refujo de inercia. Dicho fenómeno produce que en las estaciones más internas se desarrolle una intensa asimetría temporal de los semicírculos mareas, de tal modo que el semicírculo de refujo dura tanto más que el de flujo cuanto más interna sea la zona en que se produzca.

La coincidencia de orientación de los vientos dominantes procedentes del S.O. y el canal principal del estuario permite además, la frecuente generación y actuación del oleaje en el interior del mismo, hecho que influye en la propagación de la onda de marea en el sentido contrario, de tal modo que cuando sopla viento fuerte de potente la asimetría de la onda de marea es menor.

Agradecimientos

Referencias