Composición isotópica de las aguas de la Unidad Hidrogeológica Yunquera-Nieves (Provincia de Málaga)

Isotopic composition of the waters in the Hydrogeological Unit Yunquera-Nieves (Province of Malaga)

C. Liñán Baena*, C. Jiménez de Cisneros Vencelá†**, E. Caballero Mesa †**, F. Carrasco Cantos† y B. Andreo Navarro†

(*) Departamento de Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga.
(**) Laboratorio de Isótopos Estables, Estación Experimental del Zaidín (CSIC). C/ Profesor Albareda 1, 18008 Granada.

ABSTRACT

The isotopic composition of the waters sampled in the Hydrogeological Unit Yunquera-Nieves are from Mediterranean and Atlantic origin. The 18O and 2H contents define a local meteoric water line with lower slope than mundial meteoric water line, because of the evaporation process. The mineralization and isotopic composition of the waters decreases with the altitude, which allow us delimit the recharge surface of the main springs of the Unit. The mineralization and the isotopic composition of rainwater vary inversely to the amount of precipitation. The springwaters deplete their mineralization and isotopic content in response to the outflow increase because of the important winter precipitations. Anyway, the responses are quick, which probe the karstic behaviour of the springs.

Key words: Deuterium, Oxygen-18, catchment area, karstic aquifer, Sierra de las Nieves.

Geogaceta, 25 (1999), 127-130
ISSN: 0213683X

Introducción

La Unidad Hidrogeológica Yunquera-Nieves ocupa una superficie de 170 km² y forma parte de la Reserva de la Biosfera Sierra de las Nieves y su Entorno, en el sector occidental de la provincia de Málaga (Fig.1). La Unidad Hidrogeológica queda limitada en sus bordes por materiales de baja permeabilidad y está formada, a su vez, por dos unidades tectónicas: la de Nieves, en posición inferior y, encima, la de Yunquera. La unidad de Nieves se encuentra muy laminada bajo la de Yunquera, aunque aflora en la mayor parte del área de estudio y está constituida por una potente formación dolomítico-caliza, de edad triásico-liásica, involucrada en una estructura sinclinal de dirección axial N40-60°E y vergente al NO (Martín Algarra, 1987). La unidad de Yunquera aflora localmente en las inmediaciones del pueblo del mismo nombre; se trata de una escama tectónica cuya secuencia litológica está formada por metapelitas del Paleozoico y mármoles triásicos. La estructura geológica del macizo ha sido troncada por fracturas transversas, de dirección N130°E (Fig. 1), que compartimentan la Unidad Hidrogeológica en varios bloques (ITGE et al., 1995).

Fig. 1.- Situación geográfica y esquema hidrogeológico de la Unidad Yunquera-Nieves.

Fig.1.- Location and hydrogeologic sketch of the Hydrological Unit Yunquera-Nieves.
La recarga se produce por la infiltración del agua de lluvia y de nieve. La descarga se realiza, fundamentalmente, a través de manantiales situados en el borde sur (Fig. 1). Los manantiales más importantes están relacionados con el drenaje de la unidad tectónica de Nieves (IGME, 1983): Río Grande, surge a la cota más baja del macizo (450 m.s.n.m.) y constituye el principal punto de descarga de la Unidad con un caudal medio del orden de 700 l/s, Río Verde (situado a 675 m.s.n.m. y con un caudal medio de 400 l/s), Genal (700 m.s.n.m. y 300 l/s) y Jorox (530 m.s.n.m. y 150 l/s). La unidad tectónica de Yunquera se destaca, principalmente, por el manantial del Plano, a cota 700 m.s.n.m. y con un caudal medio de 100 l/s.

En este trabajo se pretende dar a conocer la composición isotópica y el origen de las aguas drenadas por los principales manantiales del área de estudio, tratar de delimitar la superficie de recarga de los mismos y hacer algunas consideraciones sobre su comportamiento hidrogeológico.

Agua de precipitación

Desde Noviembre de 1995 hasta Septiembre de 1997, se han recogido muestras de agua de lluvia en dos puntos de la Unidad Hidrogeológica, situados a diferente cota (Fig.1 y Tab.1): Cuevas del Moro (660 m.s.n.m.) y Llanos de la Nava (1060 m.s.n.m.). Las aguas recogidas en la estación de Cuevas del Moro presentan valores medios de conductividad más elevados (56 µS/cm) que las recogidas en la estación de Llanos de la Nava (33 µS/cm), al igual que ocurre con el contenido en isótopos estables (δ¹⁸O = -6.68 y -7.55 ‰, δ³⁶H = -38.21 y -40.94 ‰), debido al efecto altitud (Dansgaard, 1964).

<table>
<thead>
<tr>
<th>Período muestreado</th>
<th>δ¹⁸O (%)</th>
<th>δ³Ｈ (%)</th>
<th>d (µS/cm)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 al 12/11/95</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/11/1/95</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 al 11/12/95</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 al 12/12/95</td>
<td>-3,32</td>
<td>-44,40</td>
<td>22,16</td>
<td>12</td>
</tr>
<tr>
<td>14 al 20/12/95</td>
<td>-7,70</td>
<td>-44,20</td>
<td>17,40</td>
<td>6</td>
</tr>
<tr>
<td>22/12/95 al 20/3/96</td>
<td>-5,53</td>
<td>-32,40</td>
<td>11,84</td>
<td>41</td>
</tr>
<tr>
<td>29/4 al 9/5/96</td>
<td>-6,92</td>
<td>-41,20</td>
<td>14,16</td>
<td>12</td>
</tr>
<tr>
<td>14/6/96</td>
<td></td>
<td></td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10 al 18/6/96</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>17 al 20/6/96</td>
<td></td>
<td></td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>13 al 17/10/96</td>
<td>-7,44</td>
<td>-46,70</td>
<td>12,82</td>
<td>16</td>
</tr>
<tr>
<td>28/10 al 12/11/96</td>
<td>-4,46</td>
<td>-24,60</td>
<td>11,08</td>
<td>13</td>
</tr>
<tr>
<td>13 al 21/11/96</td>
<td>-6,29</td>
<td>-33,70</td>
<td>16,62</td>
<td>6</td>
</tr>
<tr>
<td>3 al 22/12/96</td>
<td>-6,72</td>
<td>-38,50</td>
<td>13,56</td>
<td>5</td>
</tr>
<tr>
<td>28/12 al 8/1/97</td>
<td>-6,75</td>
<td></td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>15 al 20/1/97</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15 al 24/5/97</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>31/5 al 15/6/97</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20/6 al 4/9/97</td>
<td></td>
<td></td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>3 al 22/9/97</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>9</th>
<th>8</th>
<th>8</th>
<th>20</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>media aritmética</td>
<td>-6.68</td>
<td>-38.21</td>
<td>15.17</td>
<td>56</td>
<td>-7.55</td>
<td>-40.94</td>
<td>19.46</td>
<td>33</td>
</tr>
</tbody>
</table>

Tabla 1.- Composición isotópica de las muestras de agua de precipitación recogidas. (n) número de muestras, (d) exceso de deuterio.

Table 1.- Isotopic composition of the rainwater samples. (n) number of samples, (d) deuterium excess.
to de muestreo (Gat y Carmi, 1970; Cruz Sanjuánil et al., 1992).

La evolución temporal de la conductividad eléctrica y de los datos disponibles de la composición isotópica (Fig. 3), muestran valores más elevados en los períodos con menor cantidad de precipitación, normalmente durante el período estival o a principios de año hidrológico, mientras que los valores mínimos corresponden a periodos de mayor pluviometría de la época invernal. Este hecho pone de manifiesto el efecto estacionalidad (Dansgaard, 1964; Plata, 1994).

Agua subterráneas

Desde Febrero de 1996 hasta Enero de 1997, se han tomado muestras de agua de los cuatro manantiales principales de la Unidad Hidrogeológica, para determinar su conductividad eléctrica y composición isotópica (Tabla 2). Las aguas menos mineralizadas son las de Río Grande, con un valor medio de conductividad de 320 μS/cm y las más mineralizadas son las del manantial de Jorox, con una conductividad media de 422 μS/cm. Las aguas de los manantiales de Genal y Río Verde tienen unos valores de conductividad media de 340 y 335 μS/cm, parecidos a los de las aguas de Río Grande.

Los contenidos isotópicos de las aguas subterráneas durante el período de estudio están comprendidos entre -6,90 y -8,85 % para el ^{18}O y entre -39,90 y -52,10 % para el ^2H. El exceso en deutero varía entre 20,08 y 12,66 %, con valor medio global de 16,43 %, indicativo de que las aguas de salida son mezcla de frentes lluviosos mediterráneos y atlánticos (Gat y Carmi, 1970; Plata, 1994).

En la Figura 4 se han representado las muestras de agua subterránea sobre un diagrama ^2H-^18O junto con las líneas meteoríticas mundial y local. Las aguas subterráneas analizadas definen una línea ligeramente oblicua a la del agua de lluvia. Las muestras de Río Grande se agrupan en el extremo izquierdo de la nube de puntos (Fig. 4), ya que son las más empobrecidas isotópicamente, mientras que las del manantial de Jorox se sitúan hacia el

Tabla 2.- Composición isotópica de las muestras aguas subterránea. (n) número de muestras, (d) exceso en deutério.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>^{18}O (%)</th>
<th>^2H (%)</th>
<th>Conductividad (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2/96</td>
<td>-7,91</td>
<td>-7,60</td>
<td>422</td>
</tr>
<tr>
<td>5/2/96</td>
<td>-8,37</td>
<td>-8,00</td>
<td>340</td>
</tr>
<tr>
<td>8/2/96</td>
<td>-8,85</td>
<td>-8,50</td>
<td>335</td>
</tr>
</tbody>
</table>

Tabla 2.- Composición isotópica de las muestras aguas subterránea. (n) número de muestras, (d) exceso en deutério.

Figura 4.- Diagrama ^2H-^18O de las muestras de agua subterránea. (LMM) línea meteorítica mundial, (LMP) línea meteorítica local, (LMS) línea local de las aguas subterráneas.

Figura 5.- Evolución de la conductividad eléctrica y de los contenidos en ^2H y ^{18}O de las aguas subterráneas drenada por los principales manantiales de la Unidad Yunquera-Nieves. El hidrograma corresponde a Río Verde, cuyas variaciones pueden considerarse representativas de los restantes manantiales.

Figura 5.- Evolución de la conductividad eléctrica y de los contenidos en ^2H y ^{18}O de las aguas subterráneas drenada por los principales manantiales de la Unidad Yunquera-Nieves. El hidrograma corresponde a Río Verde, cuyas variaciones pueden considerarse representativas de los restantes manantiales.
extremo derecho, al estar más enriquecidas en 18O y 3H. Las aguas drenadas por los manantiales de Genal y Río Verde, con composiciones isotópicas intermedias, se sitúan en una posición central (Figs. 4 y 5).

A partir de la composición isotópica de las aguas subterráneas (Tab.1) y teniendo en cuenta otros factores como la situación geográfica, la estructura geológica y la cota de surgencia de los manantiales (Fig.1) pueden distinguirse dos sectores principales en la Unidad. El sector occidental, se drena por los manantiales de Genal, Verde y Grande; siendo éste último el principal punto de descarga. Dentro de dicho sector, la parte occidental, desde la falla que pasa por Río Verde hacia el Oeste, se drena por las surgencias del Genal y del Verde, cuyas composiciones isotópicas son muy similares (Fig. 5), mientras que desde la citada falla hacia el Este se drena por el manantial de Río Grande. La composición isotópica más ligera de las aguas de Río Grande, está en consonancia con la mayor altitud de su superficie de recarga, donde se encuentra el vértice Torrecilla (1919 m), el más alto de la provincia de Málaga, en cuyo entorno las precipitaciones suelen ser en forma de nieve durante el invierno. No obstante, la falla de Río Verde puede que no constituya una barrera hidrogeológica propiamente dicha, sino que permita el flujo hacia el Este, hacia el manantial de Río Grande. En sentido contrario, el flujo parece no tener lugar, según los ensayos de trazadores realizados por Durán y López-Martínez (1992).

El sector oriental de la Unidad se drena por el manantial de Jorox y otros de menor importancia situados en el borde del afloramiento carbonatado. En concreto, el manantial de Jorox constituye el principal punto de descarga de Sierra Prieta; los mayores contenidos en isótopos estables de sus aguas, pueden estar relacionados con una altitud de recarga ligeramente menor pero, muy posiblemente, también con una disminución de las precipitaciones en Oeste a Este en la Unidad Hidrogeológica, tal como se ha constatado en las Sierras Blancas y Mijas (Andreo, 1997) situadas inmediatamente al sureste.

En lo referente a la evolución temporal (Fig. 5), se observa que las aguas drenadas por los manantiales a principios de 1996 eran menos mineralizadas y con menor contenido isotópico, por la importante recarga producida en diciembre de 1995 y enero de 1996. A lo largo del año 1996 se producen un aumento de los parámetros analizados, hasta que las importantes lluvias de diciembre de 1996 y enero de 1997 dan lugar a una nueva disminución generalizada de los parámetros controlados. Por tanto, ante las precipitaciones importantes, los manantiales responden con rápidos aumentos de caudal y disminuciones bruscas de la conductividad eléctrica y del contenido isotópico, lo que traduce un comportamiento kártico de los manantiales, deducido previamente a partir de las respuestas hidroquímicas de los mismos (Liñán et al., 1996).

Conclusión
Las aguas de lluvia muestradas en la Unidad Hidrogeológica Yunquera-Nieves, son de origen mediterráneo y atlántico. Dichas aguas son más mineralizadas y más pesadas isotópicamente, cuanto menor es la altitud y menor la cantidad de precipitación, hecho que se suele ocurrir en los períodos lluviosos estivales o de principios de año hidrológico. El gradiente de 18O según la altitud es de -0.22 %/cada 100 m. Los contenidos en 18O y 3H de las aguas de lluvia analizadas, definen una línea meteórica local de menor pendiente que la mundial.

Las aguas subterráneas analizadas presentan una composición isotópica propia de un origen mixto mediterráneo y atlántico. En el diagrama 3H-18O, las muestras recogidas definen una línea de pendiente similar a la línea meteórica local. Los datos de 3H y 18O de las aguas subterráneas, junto con la información hidrogeológica disponible, permiten distinguir dos grandes sectores en la Unidad. En el sector occidental, la descarga se produce, principalmente, por Río Grande y, en menor medida, por los manantiales de Genal y Río Verde; estos últimos drenan la parte occidental del sector, mientras que el manantial de Río Grande drena la parte oriental. Las precipitaciones importantes dan lugar a rápidos aumentos de caudal acompañados de diluciones y disminuciones del contenido en 3H y 18O, lo cual pone de manifiesto un comportamiento kártico de los materiales acuferos.

Agradecimientos
A la Mancomunidad de Municipios de la Sierra de las Nieves y su Entorno, al Grupo de Investigación RNM-0126 de la Junta de Andalucía y al Proyecto PB97-1267-C03-C02 de la DGES.

Referencias