La sección del Carbonífero en el Priorat Central (Prov. de Tarragona)

The Carboniferous Section in the Central Priorat (Tarragona Prov.)

E. Maestro-Maideu, R. Estrada y E. Remacha

Universitat Autònoma de Barcelona, Dep. Geologia, Estratigrafia. 08193 Bellaterra (Barcelona)

ABSTRACT

The Carboniferous outcrops in the Central Priorat (Fig. 1), Catalan Coastal Range, record a turbidite succession ranging from Tournaisian to a possible Westphalian, in which three allogroups can be recognized. From base to top these groups are named Torroja, Bassetes and Poboleda. The Torroja group records the inversion stages of a compressive basin by a basal succession of south margin derived megabreccias, underlining a fine-grained turbidite slope-delta wedge evolving from NW. The Bassetes and Poboleda groups have a terrigenous character and have been divided in composite depositional sequences (Fig. 2), recording different large channel-levée systems, evolving upward to slope-delta wedges. Gravel and sand-rich turbidites are NW derived and are located in relatively proximal positions of large turbidite systems. Composite depositional sequences record uplift-denudation cycles. SEDEX deposits are placed into the Bassetes group.

Key words: Catalan Coastal Range, Priorat, Carboniferous, megabreccias, turbidites.

Geocaceta 23 (1998), 91-94

ISSN: 0213-683X

Introducción

En la Cadena Costera Catalana, los materiales del Carbonífero del Priorat constituyen el registro de una sucesión comprendida entre el Tournaisense y posiblemente el Westajiense. La zona de estudio (Fig. 1) se sitúa en el dominio del Priorat Central (Melgardejo, 1987), que presenta una estructura tectónica relativamente simple, formada por un anticlinal de dirección NW-SE, vergencia SW e eje que sigue la dirección Porrera-La Vilella Alta. La sección que se presenta en este estudio (Fig. 2) se ubica en el flanco N de dicho anticlinal, aprovechando los afloramientos de la carretera de Porrera a La Ventana del Pubbil (TP-7402). Transcurre subparalela a la falla de Porrera, a la que llega a cortar en un punto. Ello provoca omisión parcial de una de las unidades estratigráficas que se definen de continuación, pero en cualquier caso no se produce repetición. No obstante, en su conjunto, la sección presenta una buena calidad de afloramiento y alcanza un total mínimo medido de 1.940 m. Debe tenerse en cuenta igualmente que la base y el techo están incompletos por fuerte deformación, tanto en el núcleo del anticlinal de Porrera-La Vilella Alta como en el núcleo del primer siginclusal, que se encuentra tras pasar el Coll de Porrera. En la sección se han podido identificar todas las unidades descritas en la literatura precedente, tanto de carácter general como más detalladas (Colodrón et al., 1979; Sáez, 1982; Añadón et al., 1983, 1985; Melgarrejo, 1987; Sáez y Añadón, 1989; Santanach et al., 1986). El principal objetivo del presente trabajo pretende dar a conocer una subdivisión estratigráfica de carácter genético, mediante la definición de unidades estratigráficas limitadas por discontinuidades de orden jerárquico superior (aloagrupos y secuencia deposicional compuesta, en el sentido de Mutti et al., 1994), con valor regional, cuanto menos en el Priorat Central. Así mismo se ofrecen las características generales más relevantes de las facies de la sección mencionada.

Los Aloagrupos del Carbonífero del Priorat Central

- Dentro de una jerarquía de primer orden, se han podido diferenciar tres unidades de gran escala limitadas por discontinuidades estratigráficas de rango mayor, que atribuimos a aloagrupos (Fig.2). De base a techo se denominan: Torroja, Bassetes y Poboleda. Cada uno de ellos presenta características relativamente uniformes en lo concerniente a su composición, facies, tipos de sistemas deposicionales y patrones de apilamiento, considerando las unidades de rango menor que las componen. Dichos aloagrupos pueden ser identificados a escala regional e incluso existen indicios que permiten su correlación hipotética en otras áreas fuera del ámbito de los Catalánides, muy en particular con la sucesión del Carbonífero de Menorca.

Aloagrupos de Torroja

Está formado por una sucesión Tournaisense-Viseense inferior en la que se distinguen dos tramos principales. El inferior consta de una sucesión de 98 m de megabrechas con estructura interna caótica, de difícil individualización en sucesivos eventos, excepto en los más altos, de menor volumen. Scherer (1969) ya había indicado la existencia de deslizamientos gravitacionales en la base del Carbonífero del Priorat (ver también Santanach et al., 1986). El límite inferior no ha podido ser reconocido al estar la sucesión fuertemente afectada por deformación en el núcleo del anticlinal. En la parte baja de este tramo inferior (52 m) aparecen niveles de liditas, pizarras
siliceas y localmente cineritas. Pueden encontrarse replegados o formando grandes bloques de disposición concordante a grosso modo con la estratificación. La parte media (22 m) contiene grandes bloques de areniscas, lidiitas y pizarras con deformación plástica deposicional. En los términos más altos de esta parte media (3,5 m superiores) se encuentran microbrechas arenosas de poco espesor. Por lo general, a excepción de la parte alta mencionada, la matriz está constituida por microbrechas arenosas incluidas en una fracción más fina. Es muy escasa en los términos inferiores, incrementando progresivamente hacia techo.

Con paso gradual aunque rápido, se pasa al tramo superior del alogrope. Es predominantemente pelítico (24 m), con capas delgadas de areniscas bien estratificadas en facies de turbiditas de baja densidad, que comúnmente sólo presentan la división de climbing ripples y lutita superior (F9, en el sentido de Mutti, 1992).

Las megabrechas se presentan en facies poco evolucionadas, resedimentando las facies condensadas preorogénicas (lidiitas y calizas nodulosas basales), sin que exista segregación en las divisiones propuestas por Labaume et al. (1987). Muestran mayor similitud con la Brecha de Campo, en el Cretácico Superior del valle del Esera (prov. de Huesca), y sugieren un área fuente localizada en el S (posiblemente SE). La ausencia de intervalos de facies segregados por evolución del flujo, puede estar condicionada por la falta de suficiente material lutítico involucrado en los eventos, aunque hacia el NW (zona de La Vilella Alta) admiten mayor participación de material fino, dando así soporte a la procedencia indicada, que de todos modos debe situarse en una zona relativamente cercana. Igualmente, la numerosa repetición de sismoeventos parece apuntar un período de fuerte sismicidad, asociado a las primeras etapas de estructuración de la cuenca compresiva. Por otra parte, el tramo lutítico más superior del alogrope registra el inicio de la sedimentación terrigena en la cuenca de antepaís, mediante la sedimentación en el Priorat Central de las partes más externas de un slope delta. Este rellena en parte el surco axialmente de NW a SE, dado que en la zona de La Vilella Alta esta cuña lutítica ha aumentado sustancialmente su espesor.

Alogrup Bassetes
El Alogrup de Bassetes (no estrictamente equivalente con la misma denominación de Sáez y Anadó, 1989), lo forman tres secuencias deposicionales compuestas en el sentido de Mutti et al., (1994): Bassetes 1, 2 y 3. Tienen una potencia total de 511 m, y su edad comprende desde el Viseense medio hasta el Namuríense inferior.

Las secuencias deposicionales compuestas Bassetes 1 y 2, con un total de 165 y 73 m, respectivamente, están formadas por una primera unidad extremaadamente areniscosa, constituida por turbiditas de flujos hiperconcentrados y turbidíticos de alta densidad (facies F2 y P5 de Mutti, 1992). Son facies muy poco
evolucionadas, depositadas previamente a la transformación por salto hidráulico, que se encontrarían confinadas en la zona proximal de un sistema relativamente po-bre en lutitas, ubicado en la parte más axial de un surco turbidítico. Ambas secuencias compuestas están culminadas por facies de *slope-delta*, con predominio de lutitas que contienen algunas capas areniscosas muy finas, producto de flujos diluidos (P9). La secuencia Basseset 1, aunque está mal organizada como consecuencia de las frecuentes amalgamaciones y otros fenómenos erosivos asociados a impacto de la parte basal de los flujos, presenta una tendencia general tóscamente granodecreciente. No obstante, a nivel más local, se observan ciclos dominantemente granocrecientes de hasta 15 m de espesor. Cabe remarcar que a techo de la secuencia Basseset 2 aparecen algunas mineralizaciones de sulfuros.

La secuencia Basseset 3 representa el inicio de la sedimentación turbidítica bien organizada cíclicamente según series *forestepping-backstepping* que se traducen en una parte inferior rica en arenas y turbitidias de alta densidad (flujo hiperconcentrado, facies F2 y F5, con predominio de estos últimos), que pasan progresivamente a turbitidias (P9) de tipo III (en el sentido de Mutti, 1985). Las paleocorrientes medidas dan una dispersión entre 70° y 140°, si bien debe tenerse en cuenta que su cuantificación resulta del simple abatimiento a la horizontal. A su vez, existe una ordenación vertical menor del tramo areniscoso basal, dando ciclos de alta frecuencia que alcanzan 10 m, con flujos sucesivos de carácter creciente tanto en lo concerniente a su volumen como a la densidad. Hacia techo, se pasa progresivamente a facies (P9) de grano fino, de *slope-delta*, muy bien desarrolladas (Unidad de Scala-Dei de Sáez y Anadón, 1989). En este tramo lutítico se ha observado alguna intercalación esporádica de carbonatos, posiblemente asociados a procesos exhalativos (Melgarejo, comunicación personal). La tendencia cíclica de este tramo es marcadamente decreciente, tanto por la densidad de sus facies como en lo concerniente al volumen de los flujos.

<table>
<thead>
<tr>
<th>SECUENCIAS</th>
<th>AGRUPOS</th>
<th>EDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>POBOLEDA 4</td>
<td>POBOLEDA</td>
<td>Namurienense superior</td>
</tr>
</tbody>
</table>
| POBOLEDA 3 | POBOLEDA | Westfalense (?)
| POBOLEDA 2 | POBOLEDA | Namurienense superior |
| POBOLEDA 1 | | |
| FALLA DE Porrera | | |
| BASSETES 3 | BASSETES | Namurienense inferior |
| BASSETES 2 | | |
| BASSETES 1 | | Viseense medio-superior |
| "Megabrechas de "Torroja" | | Tournaisense-Viseense inferior |

Fig. 2.-Sección de Porrera simplificada, mostrando la subdivisión de unidades genéticas de orden superior

Fig. 2.-Simplified Porrera section showing the major genetic unit divisions
Alogroupo de Poboleda

El alogroupo de Poboleda, con una edad Namuriano superior y posiblemente alcanzando el Westfaliano, tiene un espesor mínimo constatado de 1.305 m. Incluye la unidad del mismo nombre propuesta por Sáez y Anadón (1989) y se ha subdividido en cuatro secuencias deposicionales compuestas: Poboleda 1, 2, 3 y 4. No obstante, como se indicaba con anterioridad, la secuencia Poboleda 4 no aflora completa por el tecno, y tan sólo se han medido 181 m.

La secuencia deposicional Poboleda 1 presenta un espesor mínimo de 575 m, aunque parte de la sucesión no se ha podido precisar al estar afectada por la falla de Porrera. Únicamente se ha podido caracterizar por separado la parte inferior y la superior. La secuencia compuesta Poboleda 2, con un espesor de 87 m, se inicia con un tramo conglomerático basalt de 30 m sobre el que, rápidamente, se instalan facies turbidíticas de tipo III, dominantemente lutíticas. La secuencia Poboleda 3, que tiene un espesor de 462 m, en la base registra un desplazamiento zonal hacia cuenca progresivo mediante facies areniscosas que culminan con la instalación de facies conglomeráticas en el punto de desplazamiento máximo. A partir de estas últimas el sistema se desplaza hacia tierra mediante facies areniscosas que progresivamente pasan a ser dominantemente lutíticas correspondiendo al prisma de slope-delta. Este mismo carácter de la base de la secuencia Poboleda 3 se repite en la secuencia Poboleda 4, aunque se desconoce su evolución vertical a partir de la entrada de las facies conglomeráticas.

Cada una de las secuencias compuestas mencionadas anteriormente consta de un tramo inferior que registra el avance forestepping del sistema hacia cuenca. Este avance queda registrado bruscamente o de forma gradual. En el primer caso la mayoría de los eventos acontecidos en la etapa de avance hacia cuenca han efectuado bypassing para depositarse en regiones más externas del sistema, fuera del área de estudio. Su registro en las posiciones analizadas se manifiesta en la superficie basal de la secuencia compuesta, que inicia su depósito directamente con elementos pertenecientes al sistema de transferencia (gravas y conglomerados residuales clast-supported, F3 de gran volumen implicado en cada evento). En otros casos el desplazamiento zonal hacia cuenca queda registrado de forma gradual mediante un incremento progresivo del volumen y densidad de las facies areniscosas, hasta culminar en los términos conglomeráticos residuales. En estos últimos casos las secuencias implicadas se interpretan como depositadas en posiciones relativamente más distales, respecto a las primeras, y posiblemente están asociadas a una disminución relativa del volumen de los flujos y tamaño del sistema. En el segundo caso, el sistema se inicia con elementos deposicionales, no canalizados y ricos en arena (lóbulos) con abundantes F8 y F9, y de transición canal-lóbulo (F5), que evolucionan hasta ser alcanzados por el sistema de transferencia dentro de un continuo, y esculpidos según órdenes cíclicos menores no tratados en este trabajo. A hecho de los conglomerados todos los sistemas han mostrado los efectos del backstepping pasando por elementos de transición canal-lóbulo hasta lóbulos, culminando con facies turbiyíticas de grano fino (F9), asociadas a sistemas deltícicos (slope-deltas).

A lo largo de todo el alogroupo las paleocorrentes muestran una dispersión entre 160° y 230°.

Estas secuencias anteriores se corresponden con sistemas de tipo channel-levee de grandes dimensiones, cortados a grosso modo longitudinalmente entre Las Villelas y Porrera. No obstante, muestran cierta persistencia relativa de los elementos mayores, que se disponen cíclicamente en la misma posición areal. A su vez, el grupo Poboleda está asociado a tasas de fuerte subsidencia en el área del Priorat Central y atendiendo al tipo de sistema parece estar relacionado con un sistema fluvo-deltaico relativamente rico en finos, de grandes dimensiones y larga duración, cuya ubicación estaría fuera de los afloramientos del Priorato Central. Todo ello parece estar indicando que los sedimentos estudiados pertenecen a un contexto relativamente proximal a escala de sistemas de grandes dimensiones. Esta posición paleogeográfica puede ser alcanzada tanto por elementos de transferencia como de transición canal-lóbulo. Estos sistemas tendrían un punto de entrada en el NW, relativamente fijo y posiblemente controlado teóricamente, hasta la fecha desconocido.

Conclusions

En el presente trabajo se aporta una nueva sección del Carbonífero del Priorat, en la que se distinguen tres alogroupos correlacionales a escala de la cuenca (Fig. 2). El grupo inferior se corresponde con los primeros estadios de evolución de una cuenca compresiva, registrando muy posiblemente los estadios de inervación de fracturas distensivas precedentes, mediante una sucesión de megarechas y asociadas a un período de fuerte actividad sísmica, durante el cual se estructura la cuenca compresiva. Los dos alogroupos superiores se han subdividido en diferentes secuencias deposicionales compuestas, que registran la evolución de diferentes sistemas channel-levee de grandes dimensiones. Estos sistemas en la región estudinada admiten elementos de transferencia, transición canal-lóbulo y lóbulo, y se organizan en ciclos forestepping-backstepping, culminados por prismas de estudios de crecimiento de tipo III. Toda la sedimentación terrígena presenta un origen en las regiones ubicadas en el NW. Paleogeográficamente, los sedimentos terrígenos estudiados se habrían depositado en posiciones relativamente proximales de grandes sistemas turbíyíticos. Las sucesiones repetitivas forestepping-backstepping han sido atribuidas por Mutti et al. (1996) a ciclos de levantamiento-denudación, que en este caso se manifiestan a escala de secuencia deposicional compuesta e incluso mayor.

Bajo un punto de vista de las facies con interés económico cabe destacar que las mineralizaciones SEDEX se han localizado en el alogroupo Bassetes.

Agradecimientos

Este trabajo ha sido subvencionado con fondos del proyecto AMBV-0932-C02-01. Agradecemos a J. C. Meilgarejo, la introducción al tema, discusiones sobre el terreno y lectura crítica del texto original.

Referencias