Estratigrafía y Bioestratigrafía (Charophyta) del Cretácico Inferior en el Sector Occidental de la Cuenca de Cameros (Cordillera Iberica)

C. Martín-Closas ¹ y A. Alonso Millán ²

¹ Departament d’Estratigrafia i Paleontologia, Facultat de Geologia, Universitat de Barcelona, 08071 Barcelona.
² Laboratorio de Geología, Facultad de Ciencias, Campus da Zapateira, 15071 La Coruña.

Resumen: El sector occidental de la Cuenca de Cameros presenta un registro fósil de carófitas muy completo que permite la datación de las unidades estratigráficas y ofrece un patrón de comparación con el sector oriental de la misma cuenca, donde los datos bioestratigráficos son escasos. Durante el intervalo Titónico-Barremiense se desarrollaron en Cameros Occidental cinco Secuencias Depositionales. La Secuencia Depositional I está ampliamente representada y registra uno o varios pulsos sedimentarios con facies aluviales a la base (Fms. Señora de Brezales, Jaramillo y Río del Salcedal) que pasan diaturnalmente y a trazo a facies lacustres (Fms. Boiras, Campolara y Río de San Marcos). La base de la secuencia contiene asociaciones de carófitas de la biozona de Maillardii (Titónico-Barriaisense inferior) y el techo puede alcanzar la biozona de Incrassatus (Barriaisense medio). Los materiales de esta secuencia están representados en Cameros Oriental por las Fms. Tera, Magaña y Sierra de Matute como mínimo. En Cameros Occidental no se ha registrado ninguna unidad perteneciente a la biozona de Nurrensis (Barriaisense superior-Valanginiense basal) mientras que esta biozona se encuentra representada en Cameros Oriental al menos por la Fm. Heterolithica inferior. La Secuencia Depositional II (Valanginiense-Hauteriensis) únicamente está registrada al sur de Cameros Occidental (Fm Peñacoba). Esta secuencia, siguiendo una tendencia general en toda la Cordillera Iberica, también tiene un desarrollo muy limitado en Cameros Oriental (Calizas de Cabredón). La Secuencia Depositional III (Hauteriensis superior-Barriaisense inferior) está ampliamente representada en Cameros Occidental por las Fms. Pinilla de los Moros y Hortigüela, excepto en el sector de Soria, donde se desarrolla la Fm. Golmayo. Esta última presenta asociaciones de carófitas ligeramente más antiguas que las del resto de la cuenca. La bioestratigrafía de Cameros Occidental es comparativamente poco conocida durante el intervalo Barriaisense-Aptiense. Las Secuencias Depositionales IV y V no han suministrado por ahora datos bioestratigráficos referidos a carófitas.

Palabras clave: Bioestratigrafía, carófitas, Secuencias Depositionales, Cretácico inferior, Cuenca de Cameros.

Abstract: The Western Cameros Basin yields a complete charcoal fossil record which enables us to characterise chronostratigraphically the formations and depositional sequences described within the basin. The stratigraphic framework obtained in Western Cameros basin is proposed as a model for the Eastern Cameros Basin, where biostratigraphic data are comparatively scarce. From Tithonian to Barremian five depositional sequences developed in the Western Cameros Basin. The Depositional Sequence I is represented basin-wide and yields one to three stratigraphic minor order cycles which are composed of a basal alluvial formation (Sra. de Brezales Fm, Jaramillo Fm and Río Salcedal Fm) passing laterally and upwards to a carbonatic lacustrine formation (Boleras Fm, Campolara Fm and Río de San Marcos Fm). The lowest formations are Tithonian to Early Berrisanian in age (charophyte biozone Maillardii) whereas the upper part of the sequence reaches the Middle Berrisanian (Incrassatus biozone). At least, Tera, Magaña and Sierra Matute Fms represent this sequence in the Eastern Cameros Basin. In Western Cameros there is no record of units belonging to the Nurrensis biozone (Upper Berrisanian to Lower Valanginian) whereas in Eastern Cameros at least the “Lower Heterolithic” Fm belongs to this age. The Depositional Sequence II (Valanginian-Hauteriensis) was recorded in the South of the Western Cameros Basin (Peñacoba Fm). This Depositional Sequence is also poorly represented in Eastern Cameros, where it has been recorded in the Cabredón Limestones. The Depositional Sequence III is largely represented in Western Cameros by Pinilla de los Moros and Hortigüela Fms, which yield charophytes from the Neimongolensis charophyte biozone (Early Barremian). However, in the area of Soria this depositional sequence includes the Golmayo Fm, which is relatively older (Late Hauteriensis - Earlymost Barremian). The biostratigraphy of the Western Cameros Basin during the same time interval is poorly known. Depositional Sequences IV and V have not yet yielded charophyte biostratigraphic data.

Key Words: Biostratigraphy, charophytes, Depositional Sequences, Lower Cretaceous.
La Cuenca de Cameros se diferenció al final del Jurásico dentro de un contexto de *rifting* intraplaca ligado a la apertura del Atlántico Norte (Mas et al., 1993). La etapa de *rifting* continuó hasta el Albiense medio, formándose varias cuencas a lo largo del Surco Ibérico (Camaros, Ibérica Meridional y Maestrazgo) (Fig. 1), que siguieron pautas paralelas durante su desarrollo y evolución.

Camaros ocupó la posición más noroccidental, lo que se reflejó en dos hechos principales: menor influencia marina y un cierto retraso de los procesos de diastrofismo, ya que la tendencia se inició en la zona surooriental del Surco, propagándose hacia el noroeste (Mas et al., 1993). Además, pese a ser la cuenca más interna, es también la más subsidente, y la única que presenta metamorfismo, el cual se interpreta como de carácter hidrotermal (Casquet et al., 1992). Es por tanto una cuenca singular, cuya formación, evolución posterior, e inversión tectónica final, presentan características poco frecuentes.

La Cuenca de Cameros tiene una morfología que ha condicionado la evolución del relleno sedimentario. Así, se divide en dos subcuencas (Mas et al., 1993) Cameros oriental y Cameros occidental (Fig. 2), ambas de forma rómica, la occidental es más alargada, separadas por lo que hoy se refleja como un accidente tectónico de dirección NW-SE que limita por el sur la Sierra paleozoica de la Demanda. Cada una de ellas presenta a su vez características propias en cuanto a distribución de cubetas sedimentarias, arquitectura deposicional, potencia de las unidades y evolución diagenética.

La subcuenca oriental presenta un interés especial, no solo porque en ella se registraron las mayores posiciones (hasta 6000 m de registro sedimentario desde el Malm hasta el Cretácico inferior) sino también porque es la que se encuentra parcialmente afectada por el metamorfismo de bajo grado. Debido en parte a esto, la cubeta presenta gran escasez de datos bioestratigráficos a pesar de su gran espesor de sedimentos, por lo que las unidades litoestratigráficas diferenciadas han debido ser datadas por criterios indirectos, en gran parte especulativos, y su correlación con las unidades de la subcuenca occidental se basa casi exclusivamente en criterios cartográficos y de correlación litoestratigráfica, cuyo error es elevado en una cuenca con importantes cambios de facies.

En contraposición a esta situación, en las cubetas que integran el sector occidental de la Cuenca de Cameros existen datos bioestratigráficos mucho más precisos. Por un lado, la abundancia de facies lacustres y palustres carbonatadas de estas cubetas determina que las flores de carófitas y las faunas de ostrácodos sean mucho más abundantes. Por otro lado, en estas cubetas paleogeográficamente más marginales, las discontinuidades estratigráficas se manifiestan de manera mucho más exagerada, tanto cartográficamente como bioestratigráficamente, y ello permite delimitar con mayor precisión las unidades genéticas, paso previo imprescindible a cualquier modelización geodinámica.

Creemos pues que los datos estratigráficos y bioestratigráficos procedentes del sector occidental de la Cuenca de Cameros ofrecen un patrón de comparación indispensable para el estudio de la evolución de toda la cuenca.

Antecedentes.

Los principales estudios relativos a la Cuenca de Cameros pueden ser agrupados en tres etapas: en la primera se pueden considerar los trabajos de Palacios (1890), Palacios y Sánchez Lozano (1885) y, muy posteriormente, Sáenz (1945), quienes describieron los materiales continentales de Burgos y Soria, hablando ya de un Purbeck del Jurásico superior, un Weald del Cretácico inferior e incluso un Urgo-Aptiense.

En la segunda etapa se acometen ya trabajos estratigráficos relativamente detallados. Los primeros, de gran importancia, ya que su cuadro estratigráfico y su cartografía han sido la base de casi todos los trabajos posteriores, fueron los de Beuthler (1966) y Tischer (1966), el primero en la zona occidental y el segundo en la oriental. Establecieron tres grupos litoestratigráficos para el sector occidental (Tera, Oncala y Uribió) y cinco para el oriental (Tera, Oncala, Uribió, Enciso y Olíván). Sus edades están basadas en el trabajo de Kneuper-Haack (1966) quien consideraba todo el registro sedimentario dentro del intervalo Portlandiense-Berriasiense. Estas edades fueron modificadas por Brenner (1976), quien, basándose también en el estudio de los ostrácodos, consideró que el intervalo de edades era Kimeridgiense-Barrasiense.

Marco geodinámico

Los primeros autores que abordaron el estudio de la interpretación geodinámica de la cuenca, tendieron a considerarla, teniendo en cuenta su morfología rómbica, como una cuenca ligada a movimientos en dirección (Salomón, 1982a), de tipo pull apart (releasing solitary overstep, para Guiraud y Seguret, 1985). Sin embargo, estos modelos presentaban importantes deficiencias a la hora de explicar muchas de las características de esta cuenca, en particular el tipo de contactos entre el relleno sedimentario y las unidades inyacentes, y la especial disposición geométrica de las unidades deposicionales. Recientemente, estas interpretaciones han sido modificadas por Mas et al. (1993), quienes consideran que se formó como una cuenca sincinal, formada sobre una rampa (con buceamiento sur) sobre una falla subhorizontal extensiva pro-

funda. Como resultado de la extensión, en el bloque superior se producirían fallas antiéticas en el borde sur.

Este modelo explicaría una de las características más singulares del registro sedimentario: la migración hacia el norte de los depocentros de cada una de las Secuencias Deposicionales, que se manifiesta claramente en los perfiles sísmicos disponibles del sector oriental. Por otro lado, explica también las diferencias importantes entre los sectores oriental y occidental, la falta de metamorfismo en este último, la existencia de depocentros secundarios en el mismo, y la formación de varias cubetas como resultado del movimiento y rotación de los bloques.

Durante la fase de inversión tectónica terciaria, la respuesta de los dos sectores ante la compresión pirenaica fue también diferente. Así, mientras que el sector oriental apenas presenta deformación superficial, y se resuelve mediante un cabalgamiento hacia el norte de unos 30 km, en el sector occidental se produce un siste-

ma de cabalgamientos imbricados y pliegues de propagación hacia el sur que producen un acortamiento de unos 5 km (Guimerá et al., 1995). Así, hoy día los principales accidentes tectónicos en esta área son los cabalgamientos de San Leonardo y de Moncalvillo, y la falla de Quintanilla - Hortigua, todos de dirección NW - SE. La dirección NE - SW aparece subordinada, como la falla de Jaramillo - Covarrubias, aunque en el sector de Soria, la falla de Las Fraguas puede tener un salto total, teniendo en cuenta la potencia de sedimentos acumulados en su labio hundido, de al menos mil metros. Fue probablemente una falla en dirección que resolvía los esfuerzos distensivos N10E durante la formación de la cuenca.

Centrándonos en el sector occidental, las cubetas sedimentarias presentan una morfología condicionada por las dos direcciones de fallas NW-SE y NE-SW (Fig. 2), por lo que la sedimentación se produjo en surcos alargados en la dirección NW-SE, con potencias muy variables, dependiendo de la subsistencia de cada
Marco estratigráfico.

El término Secuencia Deposicional (S.D.), utilizado en este trabajo, se refiere a unidades sedimentarias que están separadas por discontinuidades de primer orden (Unconformities Bounded Units), siendo en este caso concreto discordancias. Se utiliza este término general, en este caso, porque se trata de unidades de carácter continental, en una cuenca tectónicamente muy activa, con importantes erosiones que limitan grandemente el registro sedimentario disponible, sin niveles guía fiables y sin posibilidades de correlación con niveles marinos bien datados o caracterizados.

Surco. Por otro lado, los movimientos de los bloques durante toda la etapa distensiva dieron lugar a la sucesión de varias etapas de reactivación, con erosión y sedimentación importante, seguidas de momentos de ralentización. El relleno sedimentario en las cubetas se puede organizar así en Secuencias Deposicionales, separadas por discordancias, que comienzan por facies aluviales de abanicos o fluviales y terminan en unidades fundamentalmente carbonáticas, de origen lacustre.

Debido a esta especial geometría de la cuenca durante la sedimentación y a su clara compartimentación en cubetas, los diferentes autores que han estudiado la subcuenca occidental han diferenciado sectores o áreas que permiten una mejor representación y comprensión de la arquitectura deposicional. Aunque con ligeros diferencias, tanto Salomón, (1982b) como Clemente y Pérez Arlucea (1993) coinciden en diferenciar cuatro sectores a partir de los principales elementos estructurales: Los tres más occidentales corresponden a otras tantas bandas de dirección NW - SE, el cuarto corresponde a la zona surooriental. En este trabajo se denominan (Fig. 3):

Sector Norte (Sector plegado de Salomón, 1982a, o Área de Vizcaínos de Clemente y Pérez Arlucea, 1993) que corresponde a toda la zona sur de la Demanda hasta Salas de los Infantes y hasta la estructura anticlinal de Moncalvillo por el sur. Fue un área tectónicamente muy activa, desarrollándose durante el intervalo Titónico-Berriasienese hasta tres secuencias fluvio-lacustres, que afloran actualmente en anticlinales con ejes NW-SE. El límite occidental lo constituyen las mueltas de Cretácico superior marino que son tan características del paisaje

C. Martín-Closas y A. Alonso Millán

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S.D.II</td>
<td>HAUTERIENSE sup.</td>
<td>Fm. Peñacoba</td>
<td>Serie de Peñacoba</td>
<td>Gr. Tera</td>
<td>Fm. Golemayo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.D.I</td>
<td>HAUTERIENSE VALANGINENSE</td>
<td>Fm. Rio de San Marcos</td>
<td>Fm. Rio del Salado</td>
<td>Fm. Malute</td>
<td>Fm. Malute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERRIASIENSE</td>
<td>TITÓNICO</td>
<td>Fm. Campo de la Fuente</td>
<td>Sonda</td>
<td>Fm. Hortocuevos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERRIASIENSE</td>
<td>TITÓNICO</td>
<td>Fm. Dolores</td>
<td>Fm. Hoya del Moro</td>
<td>Fm. Castróvido</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERRIASIENSE</td>
<td>TITÓNICO</td>
<td>Fm. Sra de Brezales</td>
<td>Fm. Hortocuevos p.p.</td>
<td>Fm. Sra de Brezales</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4.- Tabla de equivalencias entre las unidades utilizadas en este trabajo y las unidades utilizadas por autores anteriores.

castellano. Las discontinuidades son también importantes, faltando algunas de las Secuencias Depresionales. Hay que señalar que en este sector, el más occidental de toda la cuenca, las unidades presentan prácticamente siempre características sedimentológicas que indican una mayor distalidad respecto al área madre que en otros sectores.

Sector Central (Sinclínorio Medio de Salomón, 1982a, y Área Central de Clemente y Pérez Arlucea, 1993) que incluye la zona comprendida entre el anticlinal y cabalgamiento de Moncalvillo, donde aflora el basamento paleozoico y la serie mesozoica infrayacente, y el cabalgamiento de San Leonardo. En este sector las unidades inferiores tienen poco desarrollo, ya que parece haber actuado como un umbral sedimentario. Por el contrario, tienen un gran desarrollo los materiales de las secuencias barremienses. Actualmente constituye *grosso modo* una gran estructura sinclinal de dirección NW-SE.

Sector Sur (Sector Plegado del SW de Salomón, 1982a, o Área de Hertzueulos de Clemente y Pérez Arlucea, 1993) que incluye una serie de pliegues en los que afloran fundamentalmente las unidades basales. Es el único sector en que aparece la secuencia Valanginiense - Hauteriviana en Cameros Occidental. Por el sur queda limitado por las sierras de Cretácico superior que se sumergen bajo los terciarios de la Cuenca del Duero.

Finalmente, se considera el Sector de Soria, (Área de Soria de Clemente y Pérez Arlucea, 1993) cuyas características geotectónicas son especialmente complejas. Fue una zona de importante subsidencia, ligada a la fractura de dirección NE-SW arriba mencionada, pero...
condicionada también por la estructura que divide a las dos subcuencas y que parece que constituyó un alto paleogeográfico importante. Así, presenta las unidades basales con potencias muy variables, desconectadas. Sólo se produce una homogeneización a partir del Barremiense ¿medio?.

Las unidades litoestratigráficas utilizadas para este trabajo son básicamente las publicadas por Clemente et al. (1991) y Clemente y Pérez Arlucea (1993) (Fig. 4). En el primero de estos trabajos se sientan las bases de la diferenciación de las cinco secuencias deposicionales que son detalladas en el segundo mediante la exposición de un gráfico en el que se representan las unidades con el rango de Formación. Este cuadro estratigráfico constituye una notable aportación a la estratigrafía regional, ya que ordena y clifica la compleja nomenclatura actual. Aun cuando, desafortunadamente, no ha sido publicada la descripción detallada de las unidades, y por tanto no se las puede considerar con carácter formal, las consultas personales (Clemente, com. pers. 1987-1994) y las observaciones propias nos han llevado a aceptar la mayor parte de ellas, si bien han sido realizadas algunas modificaciones, en general simplificaciones o reajustes temporales, teniendo en cuenta los nuevos resultados de las dataciones. Los criterios de estratigrafía seccional utilizados para la diferenciación de las secuencias son los mismos arriba mencionados, es decir, diferencias unidades limitadas por discontinuidades (discordancias).

 Todas las unidades son básicamente de origen continental, con la excepción de un breve episodio de influencia marina en la Secuencia Deposicional I (S.D.I), interpretado así por la presencia de miliolídos (Clemente, com. oral, 1991). Este mismo hecho, y para la misma secuencia, es mencionado Schudack (1987) y por Mas et al. (1993) en la subcuenca oriental de Cameros (Sector del Puerto de Bigornia). Las Secuencias Deposicionales, prácticamente sin excepciones, comienzan con facies siliciclasticas, generalmente fluviales y pasan progresivamente hacia techo, y lateralmente, a facies carbonáticas lacustres.

Marco bioestratigráfico

Desde los primeros trabajos sobre la estratigrafía de Cameros se puso de manifiesto la necesidad de contar con un importante soporte bioestratigráfico. Esta necesidad es especialmente manifiesta en el sector occidental, ya que el desarrollo de la sedimentación en cubetas bien diferenciadas hace muy acusada la falta de niveles guía y los frecuentes cambios laterales de facies. Todo ello, junto con la importante tectonización de la cuenca, determinan que la correlación de las unidades se deba realizar fundamentalmente a partir de su contenido paleontológico. Históricamente, la bioestratigrafía de la cuenca de Cameros se ha basado en el estudio de los ostrácodos (Kneuper-Haak, 1966; Brenner, 1976; Salomón, 1982a,b) y las carófitas (Brenner, 1976; Schudack 1987; Martín-Closas, 1989, 1991). Más recientemente también se ha dispuesto de datos procedentes del estudio de palinomorfos (Batten, en Clemente y Alonso, 1991).

Las formaciones de carácter lacustre y palustre estudiadas en el presente trabajo han proporcionado una flora de carófitas constituida por representantes de las familias Clavatoraceae y Characeae, además de miembros de los taxones parafiléticos «Porochara» y «Feistiella». Únicamente los miembros de Clavatoraceae se han considerado en el análisis bioestratigráfico. La sistemática de la familia Clavatoraceae empleada en el presente trabajo corresponde a la sistemática filogenética propuesta por Martín-Closas (1989) y formalizada por Schudack (1993) y Martín-Closas (1996). De acuerdo con ello, las especies aquí mencionadas corresponden a especies evolutivas en el sentido de Wiley (1978) y sus variedades anagenéticas corresponden a las «cronoespecies» de

Figura 5.- Biozonación del Malm y el Cretácico inferior mediante carófitas y su correlación con las biozonaciones del dominio marino (biozonas de amonites encuadradas), y macroforaminíferos. Las líneas discontinuas indican incertidumbre (modificado de Martín-Closas y Schudack, 1996).

Figura 6.- Cuadro de correlación de las unidades estratigráficas estudiadas en este trabajo (modificado de Clemente y Pérez-Arrieta, 1993) y de su relación con las biozonas de carñífridos.

El muestreo ha sido selectivo en los niveles lacustres/palustres que presentaban indicios de fauna o flora. La mayoría de muestras estudiadas se consideran acumulaciones «in situ» de restos vegetativos y reproductores calcificados (utrículos en Clavatoraceae, girogonitos de Characeae y «Pororocaraceae»). No obstante, en algunos casos se han hallado pruebas de transporte. Los criterios para reconocer este transporte son la presencia de fragmentos de utrículos y girogonitos con márgenes romos, desgaste mecánico de su superficie y mezcla de utrículos de diferentes niveles cronoestratigráficos. Los dos primeros casos pueden corresponder a procesos de resedimentación mientras que el último se considera un indicio de reelaboración en el sentido de Fernández-López (1984). Las muestras que presentan indicios de transporte no se han tenido en cuenta en el análisis bioestratigráfico.

La biozonación del Malm y del Cretácico inferior continentales mediante carñífridos fue propuesta por primera vez de manera exhaustiva por Grambast (1974). Posteriormente ha sido completada y modificada por numerosos autores, entre los que cabe destacar Martín-Closas y Grambast-Fessard (1986), Martín-Closas y Salas (1988, 1994), Mojon, in Detraz y Mojon (1989), Schudack (1991, 1993), Feist y Schudack (1991). Esta biozonación está compuesta por biozonas de conjunto (assemblage zones) definidas por la superposición en el tiempo de diversas filozonas. Recientemente, Martín-Closas y Schudack (1996) han propuesto una biozonación para el intervalo Malm-Albiense, que adoptaremos en este estudio (Fig. 5). En dicha biozonación, las bases de las biozonas están definidas por la aparición de especies evolutivas o por su cambio.
gradual en variedades anagenéticas. La extensión temporal de las biozonas viene determinada por la superposición de diversas filozonas. En este sentido, la biozonación tiene un carácter mixto ya que está formada a la vez por zonas de extensión parcial (partial range zones) y zonas de conjunto (assemblage zones). Estas biozonas han sido correlacionadas parcialmente con biozonas del dominio marino mediante ammonoideos o foraminíferos, pero actualmente persisten intervalos sin correlación precisa, que únicamente se pueden acotar entre las biozonas bien datadas. A pesar de ello la biozonación de carófitas empleada posee, en comparación con las de ostrácodos continentales y palinomorfos, una mayor resolución y un grado de correlación más elevado con las biozonaciones del dominio marino de la Mesogea.

La elevada subsistencia que se manifestó en la Cuenca de Cameros durante su formación, dio como resultado la acumulación de unidades muy potentes y, por ello, una dificultad añadida al análisis bioestratigráfico de sus unidades. Por un lado, los restos fósiles preservados se diluyen con tan notable velocidad de sedimentación. Por otro, los niveles datados son siempre pocos y cubren sólo algunos tramos de las series. Por ello, es muy difícil en muchos casos precisar sus límites, pudiendo, como mucho, establecer un momento o fijar un instante durante su sedimentación.

Bioestratigrafía (Carófitas) de las Secuencias Depositionales.

Secuencia Deposicional Titónico-Berriasienne (S.D.I) (Figs. 4 y 6).

Litoestratigrafía. La base de la secuencia está definida en toda la cuenca por una importante discordancia que responde a la emersión, fracturación y karstificación posterior de las antiguas plataformas marinas de edad Callovienne a Kimeridgiense. La sedimentación se inicia en toda la cuenca con una importante descarga de terrígenos, principalmente originados en abanicos aluviales que tienden a rellenar los primeros relieves (Fm. Señora de Brezales). Los abanicos pasan lateralmente y hacia techo a zonas palustres y lacustres muy someras (Fm. Boleras). Esta primera secuencia muestra importantes diferencias de potencia entre unos sectores y otros; sin embargo, es notable su persistencia en toda la subcuenca estudiada. Se puede identificar, incluso en el Sector de Soria, como la Fm. Hoya del Moro, que tiene las mismas características, y en el sondeo de Aldehuela, cuya base es conglomerárica. Solo en algunas zonas concretas no aparece, probablemente debido a que se tratara de altos paleogeográficos, por ejemplo, zonas altas de los bloques rotados, donde la exposición de las calizas jurásicas fue más larga.

La Fm. Señora de Brezales está formada por arcillas rojas y paleocanales de conglomerados polimétricos. Entre los cantos calcáreos, que son predominantemente, se pueden reconocer con facilidad las diversas unidades del Jurásico marino que estaban siendo desmanteladas. La potencia varía entre la decena de metros y los 70 metros. Sus facies distales están representados por la Fm. Boleras (pot. max. 60 m.), formada por calizas micriticas, y más frecuentemente por calizas nodulizadas y margas. Se pueden observar numerosos niveles de suelos de tipo hidromorfo. En esta formación son frecuentes los restos de carófitas y ostrácodos de aguas continentales.

En todo el sector centro, la S.D.I está representada sólo por esta secuencia sedimentaria aluvial-lacustre, pero en el norte aparecen otros dos pulsos de sedimentación, cada uno de ellos representando una secuencia menor fluvio-lacustre. El primero de estos pulsos está formado por las Fms Jaramillo de la Fuente y Campolara. La Fm. Jaramillo de la Fuente está formada por cuerpos lenticulares de areniscas, lutitas y algunas intercalaciones de calizas. Su potencia máxima es de 400 m. Pasa lateralmente y hacia techo a la Fm. Campolara, de 100 m de potencia, formada por calizas y margas, con restos de carófitas, ostrácodos y gasterópodos. Las calizas presentan abundante contenido en materia orgánica y numerosos niveles edificados, ordenándose en secuencias que pasan de base a techo de margas a calizas micriticas nodulizadas. Esta segunda secuencia menor fluvio-lacustre aparece también representada en el sector sur de la cuenca.

El segundo pulso está formado por las Fms. Río del Salcedal y Río de San Marcos. La Fm. Río del Salcedal es muy similar a la de Jaramillo de la Fuente en cuanto a litología y potencia. Ambas representan sistemas fluviales con canales de tipo meandriforme surcando llanuras aluviales arrojadizas y con zonas de lagos someros e 이름osos. La Fm. Río del Salcedal pasa lateralmente y hacia techo a la Fm. Río de San Marcos, que al igual que la de Campolara, representa sistemas lacustres someros, con zonas marginales lacustres muy importantes, y formada, como ella, por calizas y margas ordenadas en secuencias que representan la colmatación de dichos lagos. Su potencia es de 250 m., y las calizas contienen abundantes ostrácodos, a veces carófitas y, sobre todo hacia techo, niveles de algas estromatófiticas. En el techo de la unidad aparecen huellas de dinosaurios. En esta formación, Clemente (com. oral, 1990) mencionó la existencia de miéliolídos.

En el área de Soria, la secuencia Titónico-Berriasienne tiene una representación muy irregular, debido por un lado a la falta de afloramientos de estas unidades, pero, sobre todo, a la importancia de la tectónica en este sector durante la sedimentación. Así, en la zona de Golmayo, solo aparece la Fm. Hoya del Moro, con una potencia de menos de 200 m, aunque hay que indicar que está limitada por fracturas, por lo que no es posible conocer su potencia real en este sector. En el sector de Garray (Fm. Matute) está representada por una sola secuencia fluvio-lacustre, que comienza por arcillas rojas con algunas intercalaciones de...
LEYENDA FIG. 7

- Conglomerados
- Arenas y areniscas
- Areniscas calcáreas
- Calizas
- Ocolitos
- Conglomerado de caracoles calcáreos
- Discordancia
- Polícratas
- Muestras datadas con carótidas
- Muestras datadas con polen

Cl. (Proc.: Clemente) Sch. (Proc.: Schudack)

Formaciones.

1.- Señora de Brezales
2.- Boleras
3.- Hoya del Moro
4.- Jaramillo de la Fuente
5.- Campolera
6.- Río del Salzadell
7.- Río de San Marcos
8.- Matute
9.- Peñacota
10.- Golmayo
11.- Pinilla de los Moros
12.- Hortigallía
13.- Pantano de la Cuchada del Pozo
14.- Abajer
15.- Castrillo de la Reina

Figura 7.- Columnas estratigráficas esquemáticas de las unidades por sectores.
edafizados y abundantes oncolitos. Esta formación fue definida por Salomón (1982a) y contiene ostrácodos y carófitas. Finalmente, el sondeo de Aldehuela presenta tres secuencias siliciclastico-carbonáticas, que, en principio, se interpretan como equivalentes a la Secuencia Titónica-Berriasiena.

Bioestratigrafía. Los datos bioestratigráficos actualmente conocidos permiten situar el inicio de la sedimentación de la secuencia en la biozona de Maillardi, es decir, en el intervalo Titónico-Berriasieno inferior. Así, Schudack (1987) encontró dentro de la Fm. Señora de Brezales **Clavator grovesii var. discordis**, una especie presente en la asociación que caracteriza la biozona. La Fm. Boleras se empezó a sedimentar todavía durante la citada biozona, como lo indica la presencia de **Globator maillardii var. maillardii** y **Atopochara trivolvis var. horrida** en Quintanilla de las Viñas (Salomón 1982a; Martín-Closas, 1989, 1991). No obstante, el desarrollo de la secuencia alcanzaría el Berriasiano medio, por lo menos en Mambrillas, donde Schudack (1987) halló **Globator maillardii var. incrassatus**, variedad que define la biozona de Incrassatus.

La Fm. Río de San Marcos contiene una flor característica de la biozona Maillardi, atribuible al intervalo Titónico-Berriasieno inferior (**Globator maillardii var. maillardii**, **Nodosoclavator bradleyi**, **Clavator grovesii var. grovesii**). En el área de Soria (Fm. Matute en Garay) también se ha localizado una rica flora de carófitas de la misma biozona, con **Globator maillardii var. maillardii**, **Atopochara trivolvis var. horrida**, **Clavator grovesii var. discordis**, **Clavator grovesii var. grovesii** (Martín-Closas, 1989, 1991).

En ninguna de las muestras del sector occidental hasta ahora estudiadas se han encontrado representantes de la biozona de Nurensis y por tanto no tenemos ninguna prueba de que el intervalo Berriasieno superior-Valanginiense basal esté registrado en este sector de la cuenca.

Secuencia Depositional Valanginiense-Hauteriense (S.D.II) (Figs. 4 y 6).

Litoestratigrafía. La Secuencia Depositional II únicamente se registra en el área sur. Los materiales de la secuencia se han incluido dentro de la Formación Calizas de Peñacoba, definida informalmente por Beuther (1966). Está formada por 50 m de calizas en niveles discontinuos, areniscas en cuerpos lenticulares de base erosiva, margas y arcillas y contiene carófitas, ostrácodos y restos de dinosaurios. El techo de la formación muestra un importante nivel karstificado y edafizado.

Bioestratigrafía. Esta formación ha proporcionado en su localidad tipo una rica flora de carófitas, constituida fundamentalmente por **Hemiclaveladendor adnatus**, **Clavator harrisi** y poblaciones mixtas de **Atopochara trivolvis var. micrandra** y **Atopochara trivolvis var. ancora**. Una flora similar ya había sido encontrada anteriormente por Schudack (1987) y Martín-Closas (1989, 1991) en Hortezauelos. Esta flora es característica de la biozona de Steinhauseri (Valanginiense basal-Hauteriense superior no terminal). Actualmente la biozonación de carófitas no permite concretar este largo intervalo cronostratigráfico.

Secuencia Depositional Hauteriense superior-Barremiense inferior (S.D.III) (Figs. 4 y 6).

Litoestratigrafía. La Secuencia Depositional III está ampliamente representada en toda la subcuenca occidental de la Cuenca de Cameros. En la mayoría de áreas estudiadas está constituida por las Fms. Pinilla de los Moros y Hortiguéula, mientras que en el área de Soria lo está por la Formación Golmayo (Clemente y Alonso, 1990). La relación entre estas unidades es todavía imprecisa. Desde un punto de vista geográfico, sus respectivos afloramientos están desconectados, aunque litológicamente y desde el punto de vista sedimentológico, presentan grandes similitudes. Así, la Fm. Pinilla de los Moros, con una potencia de hasta 450 m, está formada por areniscas en cuerpos canalizados alternando con lutitas rojas. Pasa lateralmente a la Fm. Hortiguéula, que con unos 300 m de potencia máxima, esta formada por calizas con oncolitos, margas, lutitas y areniscas en cuerpos lenticulares de pequeño desarrollo. Contienen abundante fauna (ostrácodos y restos de dinosaurios) y flora (carófitas y cianobacterias).

Por su parte, la Fm. Golmayo, restringida al Sector de Soria, está formada por areniscas en cuerpos canalizados, escasos conglomerados de cantos redondeados de cuarcita, calizas micriticas en niveles delgados, y lutitas, principalmente rojas. Tiene una potencia mínima de 900 m, ya que su base está limitada por una fractura. Contiene restos de peces (Meléndez, 1978), restos de dinosaurios, ostrácodos, carófitas y polen (Clemente y Alonso, 1992).

Las dataciones, como se explica posteriormente, muestran que la Fm. Golmayo es más antigua que la Fm. Hortiguéula. Sin embargo, la última muestra datada de la Fm. Golmayo corresponde a unos niveles todavía relativamente basales, por lo que no se descarta que el resto de la formación equivalga en edad a Pinilla-Hortiguéula. Por ello, sin descartar la posibilidad de que se trate de dos secuencias diferentes, se supone en principio que las tres unidades corresponden a una misma Secuencia Depositional, comenzando la sedimentación antes en el Sector de Soria, donde la subsistencia fue claramente mayor, y ampliándose después al resto de la cuenca.

Bioestratigrafía. La flora de carófitas que han proporcionado los niveles de esta secuencia consta de las especies características de la biozona de Triquetra, por lo que su edad puede acotarse entre el Hauteriense superior y el Barremiense superior no terminal. El registro más antiguo corresponde a la Formación Golmayo, en el Sector de Soria, que presenta una flora de la zona Triquetra, subzona Triquetra, constituida por **Atopochara trivolvis var. triquetra** (morfolito primiti-
Tabla de correlación entre las unidades estratigráficas de los sectores occidental y oriental de Cameros y su relación con las biozonas de carotífas.

Secuencias Deposicionales Barremiense medio y Barremiense superior-Aptiense (Figs. 4 y 6).

Litoestratigrafía. Las Secuencias Deposicionales superiores (S.D.IV, Barremiense medio y S.D.V, Barremiense superior-Aptiense) no han podido ser datadas en este trabajo debido a que por el momento no se han encontrado en ellas carotífas que posean valor cronoeestratigráfico. Las edades, por tanto, han sido obtenidas de datos ya publicados.

La secuencia del Barremiense medio está formada por una sola unidad, muy potente, la Fm. Pantano de la Cueva del Pozo, definida por Clemente y Alonso (1990). Formada por areniscas en cuerpos lentические, con estratificación cruzada épsilon, conglomerados en canales, arquillas y limos rojos y verdes y calizas en niveles delgados, se ha interpretado como resultado de la acumulación de depósitos proximales y medios de un sistema aluvial complejo, con canales múltiples, no confinados, en una amplia...
Ilanura de inundación fluvial (Clemente y Pérez Arlucea, 1993). La S.D.IV supone una expansión importante del área de sedimentación, paralelamente a lo que ocurre en las otras cuencas sedimentarias del resto de la Cordillera Ibérica durante el Barremiense.

Clemente et al. (1991) proponen una edad Barremiense para esta secuencia basándose en su posición estratigráfica. Esta misma edad es aceptada por Clemente y Pérez Arlucea (1993), confirmada esta vez por la presencia de *Patellasporites distaverrucosus f. tavaredensis* (determinación Batten), una espora típica del Barremiense.

La S.D.V se extiende finalmente a toda la cuenca de Cameros. Comprende, en la subcuenca occidental, dos unidades, la Fm. Abejar y la Fm. Castrillo de la Reina, que son cambio lateral de facies la una de la otra. La primera, definida por Clemente y Alonso (1990), está formada por conglomerados, arenas blancas y arcillas. Corresponde a sistemas aluviales de abanicos húmedos y ríos trenzados. Lateralmente, hacia el sector norte, pasa a sistemas distales fluviales, de canales meandriformes y arcillas de Ilanura de inundación, que forman la unidad de Castrillo de la Reina.

Clemente y Alonso (1990), basándose en datos de palinofloira, consideran la Fm. Abejar de edad Barremiense-Aptiense (existencia de *Cicatricosisporites, Patellasporites distaverrucosus, Equinatisporites longechinus* y *Distantriangulisporites irregularis*). Según Clemente (com. pers., 1992) la palinofloira de la Fm. Castrillo de la Reina es muy similar.

Comparación con el sector oriental de la Cuenca de Cameros. (Fig. 8)

Teniendo en cuenta precisamente el esquema estratigráfico de Mas et al. (1993), y los escasos datos bioestratigráficos de que se dispone, se consideran en este trabajo las siguientes secuencias y sus equivalencias con las del sector occidental de la cuenca:

Secuencia Titónica-Berriasiana. Su desarrollo parece ser similar en ambos sectores. Así, los materiales de esta secuencia estarían representados en el sector oriental por las Formaciones Tera, Magaña y Sierra Matute (Alogroup Tera), como mínimo. Según determinados autores, en esta secuencia también se podrían incluir las Aloformaciones Huértetas y Valdeprado.

Secuencia Berriasiana terminal-Valanginiense basal. Caracterizada por la flora de la biotono Nurrensis. Únicamente está registrada con seguridad en el sector oriental de la cuenca, como mínimo en la Unidad Heterolítica Inferior, sensu Salinas y Mas (1990), en la Cubeta de Cervera (muestra CER-3 de Martín-Closas, 1989, 1991) y en el margen noroeste del sector oriental (muestra hallada en el Grupo Oncalia en Teberó por Schudack, 1987). En el sector occidental no hay, como hemos visto, registro alguno de esta secuencia.

Secuencia Valanginiense-Hauteriense. Representada en el sector occidental por la Fm. Peñacocha, está también registrada en el sector oriental (Fms de Cabretón y 4b). En algunos niveles de la Fm. Calizas de Cabretón, en el sentido de Salinas y Mas (1990) de la cubeta de Cervera (muestra CER-6 de Martín-Closas, 1989, 1991) se han hallado asociaciones de carófitas de la biotono Steinhauseri. Probablemente esta secuencia falte en el resto del sector oriental.

Secuencia Barremiense. Incluye la unidad siliciclastica 4c y la Heterolítica de transición de Salinas y Mas (1990). Considerando su posición estratigráfica se considera de edad Barremiense, equivalente, al menos en parte, a la S.D.IV de Cameros occidental, y probablemente a la S.D.III.

Secuencia Barremiense superior-Aptiense. Es equivalente al llamado Grupo Enciso, que no ha podido ser datado con precisión. La fauna de ostrácodos y la presencia de una clavatorácnea (*Atopochara trivolis* var. *triguetra*) en el estratotip indican una edad Barremiense sensu lato (Schudack, 1987). En Arnedillo, Alonso y Mas (1993) citan una flora de dasicladales de edad Aptiense en el seno
de la Fm. Leza, dentro del mismo Grupo Enciso. Dada la imprecisión actual de los datos bioestratigráficos, el Grupo Enciso se correlaciona por criterios fundamentalmente litoestratigráficos y cartográficos con parte de la Fm. Abee
jar del sector occidental de Cameros (Mas et al., 1993).

Secuencia Aptiense-Albiense. Coincide con el Grupo Olívan, con el cual culmina la sedimentación del ci
clo Cretáceo inferior en el sector oriental de la Cuenca
de Cameros. Esta unidad no tiene correspondencia co
nocida en el sector occidental de la cuenca. El único
dato bioestratigráfico de que disponemos para este gru
po se refiere a la presencia de *Clavator grovesii var.
lusitanicus*, clavatorácea señalada por Guiraud y Seguret (1985) en el techo del grupo. Este taxón es la
especie característica de la biocuna Lusitanicus y tiene
una edad Aptiense superior-Albiense medio.

**Comparación con las otras cuencas de la Cordille
ra Ibérica.**

Las unidades del intervalo Titónico-Barriense en el
sector occidental de la Cuenca de Cameros presentan
características sedimentológicas muy diferentes a las
del resto de la Cordillera Ibérica, debido a sus especia
les particularidades geográficas y evolutivas. No obs
stante, la evolución secuencial del relleno sedimentario
es similar en muchos aspectos a la del conjunto de la
Cordillera (Mas et al. 1993). En este sentido es im puesto destacar el gran desarrollo que presentan la
secuencia Titónico-Barriense y las secuencias del
Barriense-Aptiense respecto a las secuencias del in
tervalo Valanginiense-Hauteriviense. Estas últimas es tán limitadas a zonas muy concretas y faltan en la ma
yor parte de los sectores estudiados. Esto estaría de
acuerdo con el modelo de evolución de la subsidencia
propuesto por Salas et al. (1992) y Salas y Casas (1993)
para la Cordillera Ibérica y analizado por Mas et al.

En la Cuenca del Maestrazgo (Cordillera Ibérica Or
iental) y en las Cordilleras Costeras Catalanas se han
encontrado situaciones similares a la descrita para el
sector occidental de Cameros, especialmente en los már genes de aquellas cuencas. Así, en las cubetas de Perelló y Salou-Garraf (Cordilleras Costeras Catala
nas), las secuencias barrienses en facies de platafor ma somera o de cinturón marginal palustre (Formación
Artoles y Cantaperdus) suelen disponerse directa
mente sobre los materiales de la secuencia Berriasien
ti-Valanginiense inferior en facies de plataforma
somera (Fm. Polacos) o palustres de la Formación Els
Mangraners (Salas, 1987, 1991 y Martín-Closas, 1989,
en los márgenes septentrionales de la Cuenca del
Maestrazgo el registro es excepcionalmente completo y
se pueden encontrar las secuencias del intervalo
Berriasiense superior-Hauteriviense superior en facies
de cinturón marginal palustre (Fm. Herbers) entre la
secuencia Titónico-Barriense en facies mareales
(Fm. Plata) y las secuencias barrienses (Fm. Cantaperdus). No obstante en las zonas más extremas
de la cuenca (Barranc de l’Escreola en Herbers, Les
Rases en Aiguaviva y el Bovalar en Cinctores) la evolu
ción secuencial vuelve a presentar características análogas a las de la mayoría de las áreas de la Cuenca
de Cameros estudiadas en el presente trabajo. Así, las
secuencias barrienses representadas por las forma
ciones Cantaperdus o Mirambell se sedimentaron dis
tinuamente sobre las Formaciones Plata o Bovalar de
la secuencia Titónico-Barriense. La discontinuidad est á acompañada a menudo por karstificación, cos
tras ferruginosas y suelos lateríticos (Combes, 1969).

En la cubeta de Aliaga-Penyagolosa, las secuencias del
intervalo Valanginiense-Hauteriviense únicamente se
registra cerca del depocentro de Penyagolosa en fa
cies continentales (Fm. El Castellar y quizás la Fm.
Mora, hasta ahora no datada). En el resto de la cubeta,
ete la Fm. del Castellar y toda la Fm. de Camarillas
(secuencias barrienses) se disponen en discontinui
dad sobre la Fm. Higueral (equivalente a la Fm.
Bovalar según Salas, 1989) o sobre la Fm. Villar del
Arzobispo (igual a la Fm. Plata pro parte) (Gautier,
1974, 1980, 1981; Canérot et al., 1981; Salas, 1987,

La Cordillera Ibérica Suercoidal presenta una si
tuación análoga a la de las cubetas de Aliaga-Penyagolosa en el sentido que el registro de las secuen
cias del intervalo Valanginiense-Hauteriviense no ter
minal se limita al depocentro (Fm. Cortés en los sur
cos de Xera-Benagéver y Villar del Arzobispo). Hacia el
norte, la secuencia barriense se dispone en disconti
nuidad sobre materiales de la secuencia Titónico-
Barriense o de secuencias anteriores (Mas, 1981).
Esta situación es especialmente clara en cubetas más
internas en la Cordillera como la de las Hoya o la cu
beta de la Huérguina en la Serranía de Cuenca (Mas et
al. 1982; Meléndez, 1983), donde además el inicio de
la sedimentación neocomiense se retrasa hasta el
Barriensiense superior (Diéguez et al., 1995).

En la Cordillera Ibérica Central, la secuencia
Titónico-Barriense presenta un amplio desarrollo en
facies marginales de plataforma somera (Formación
Villar del Arzobispo, Formación Higueral) (Aurell,
1990). Los materiales de la secuencia Hauteriviense se
sedimentaron únicamente en el Valle del Río Huerva
(Meléndez y Aurell, 1989; Martín-Closas 1989, 1991;
Soria et al. 1995) mientras que en las zonas adyacen
tes volvemos a encontrar una situación de tipo marginal
con depósitos barrienses dispuestos discontinua
mente sobre los sedimentos de la secuencia Titónico-
Barriense o sobre substratos más antiguos. Así, en la
cubeta de Oliete falta por completo el registro de la
secuencia Titónico-Barriense y los materiales de las
secuencias barrienses (Fm. Biesa) se disponen sobre
un sustrato jurásico marino de edad Kimmeridgiense
o anterior (Canérot et al., 1982). Igualmente, en los sec
tores más septentrionales (sur del Moncayo) la secuen-

Dicusión y conclusiones.

Los datos obtenidos en el sector occidental de la Cuenca de Cameros tienen un grado de resolución estratigráfica muy elevado en comparación con los actualmente disponibles en el sector oriental de la misma. Esto es debido a la posibilidad de estudiar la evolución de la cuenca integrando en cada momento los resultados del análisis secuencial y del análisis bioestratigráfico. En este sentido, los resultados obtenidos constituyen un modelo de gran interés para contrastar las hipótesis que se plantean en el sector oriental de la cuenca de los Cameros y que por ahora carecen de un armazón bioestratigráfico adecuado.

El análisis de la arquitectura deposicional en el sector oriental, la disposición y potencia de las unidades, sus relaciones de yacencia y su distribución geográfica, revela la gran inestabilidad tectónica durante el desarrollo de las primeras secuencias deposicionales, ya que éstas aparecen en cubetas, muchas veces desconectadas, con subsidencias muy diferentes. Las facies clásticas revelan el carácter local de los aportes. Las facies carbonácticas lacustres tienen siempre carácter somero y muestran un notable desarrollo de las facies palustres. Se añade a esto el hecho de que la primera Secuencia Depositional refleja tres pulsos fluvio-lacustres en el sector Norte, dos en el Sur y solo uno en el Centro. La etapa Titónico-Berriensiense significa por tanto la continuación de la inestabilidad tectónica que, tras la emersión de las plataformas jurásicas, inicia la etapa de rifting que dio lugar a la formación de la cuenca.

Esta disposición tan compartimentada se agudiza al final del Berriensiense y no es superada hasta el Barremiense, cuando, en paralelo con el resto de las cuencas del rifting ibérico, se produce una expansión del área de sedimentación y también una aceleración en la acumulación de sedimentos. En toda la cuenca se produce una reducción notable de las áreas de sedimentación que se reducen a cubetas pequeñas. En el sector oriental aparece una secuencia, la Valanginiense-Hauteriviense, de la cual sólo se conservan los sedimentos acumulados en el sector Sur. Es importante hacer notar que, durante esta misma etapa, la sedimentación también pareció restringirse en la subcuenca oriental de Cameros a su sector más extremo oriental, aunque se identifican la secuencia Berriensiense terminal-Valanginiense y la Valanginiense-Hauteriviense.

Así mismo, la potencia de las unidades correspondientes es muy reducida en comparación con el resto de los episodios de depósito de la cuenca.

La siguiente secuencia deposicional supone un cierta expansión del área de sedimentación, aunque, como señalan Mas et al. (1993) todavía existía el umbral que separaba a las dos subcuenca y la compartimentación en cubetas es clara. La sedimentación comenzó antes en la cubeta del sector de Soria, claramente más subsidente que el resto, y donde la secuencia llegó a alcanzar potencias de más de 800 m. Al comienzo del Barremienese, la sedimentación se extendió ya a gran parte del sector oriental de la Cuenca de Cameros. Por desgracia, no existen afloramientos que permitan asegurar la pertenencia de las unidades Golmayo y Pinillos de los Moros a la misma secuencia deposicional. El final del Hauteriviense y parte basal del Barremienese tampoco está caracterizado en el sector oriental de la cuenca.

Durante la sedimentación de la S.D.IV la configuración general de la cuenca, aunque siempre condicionada por las directrices estructurales ya mencionadas, parece sufrir una serie de modificaciones. La cuenca se configura en surcos sedimentarios alargados, de importante subsistencia, con drenajes axiales (Clemente y Pérez Arlucea, 1993), frente a los drenajes transversales que habían dominado hasta entonces. La secuencia tiene su representación en el sector oriental, siendo precisamente este el momento en el que, por primera vez, se produce la conexión total de las dos subcuenca.

La homogeneización generalizada se produce finalmente en el Barremienese superior. Toda la zona se configura entonces como una cuenca con drenaje hacia la zona de máxima subsistencia, el NE. Los aportes principales proceden del SW, y las facies cambian en el mismo sentido desde abanicos y sistemas fluviales de gravas a lagos, pasando por grandes llanuras aluviales y deltaicas surcadas por canales de hábito meandriforme.

Las pautas de evolución secuencial del sector occidental y del Sector de Soria en la Cuenca de Cameros son muy parecidas a las observadas en el resto de la Cordillera Ibérica para el intervalo Titónico-Barremienese. Estas pautas se pueden concretar en un gran desarrollo de las unidades estratigráficas pertinentes a la secuencia Titónico-Berriensiense, un desarrollo limitado de las secuencias valanginienses y/o hauterivienses y una etapa de sedimentación expansiva, con un desarrollo incluso superior al de la secuencia Titónico-Berriensiense, que comienza al techo del Hauteriviense y continúa durante el Barremienese y parte del Aptienese.

Desde el punto de vista bioestratigráfico, existen algunos problemas sin resolver, que dependen de la posibilidad de encontrar más muestras con carófitas. En toda la cuenca se han hecho análisis de un número muy elevado de muestras, tanto para la obtención de algas como de palinomorfos. Sin embargo, los resultados se desgranen, por los motivos indicados anteriormente, de forma muy lenta. Así, existe la necesidad de precisar mas la edad de las diferentes unidades que forman la Secuencia Depositional I, y de las de las secuencias IV y V. El principal problema, sin embargo lo constituyen las edades de las unidades de la S.D. III y, en el sector oriental, la determinación de las del Grupo Urbión. La figura 8, por tanto, constituye una propuesta de correlación de la Cuenca de Cameros, a la espera de poder.

aportar más dataciones, confirmando así, o descartan-
do, los datos que se han utilizado en su confección.

Este trabajo ha sido subvencionado con los Proyectos: DGICYT PB92-0862 y PB95-1142-C02-01. Agradecemos a P. Clemente las aportaciones que ha hecho durante los últimos años al tema tratado, con sus innumerables comentarios duran-
te nuestras conversaciones con ella, tanto en el campo como en el despacho. A J. R. Mas agradecemos de manera muy especial su inestimable ayuda a lo largo de la investigación y, además, su lectura crítica del documento. Finalmente, a A. Meléndez, cuyas sugerencias como revisor nos han permitido corregir al-
gunos aspectos, mejorando la comprensión del texto.

Bibliografía.

edita.

Barrenechea, J.P. (1994): Evolución de la mineralogía de arcí-

Clemente, P. y Alonso, A. (1990): Estratigrafía y sedimentología de las facies continentales del Cretácico inferior en el borde meridional de la Cuenca de Cameros. Es-
tudios geol, 46: 257-276.

Clemente, P, Alonso, A y Pérez Arlucea, M.- (1991): Secue-

Diéguez, C., Martín-Closas, C., Meléndez, N., Rodríguez-

Manuscrito recibido el 7 de Febrero de 1998
Aceptado el manuscrito revisado el 17 de Agosto de 1998